极低密度脂蛋白受体介导富含甘油三酯的脂蛋白诱导的氧化应激和胰岛素抵抗。

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Tahar Hajri, Mohamed Gharib, Thomas Fungwe, Amosy M'Koma
{"title":"极低密度脂蛋白受体介导富含甘油三酯的脂蛋白诱导的氧化应激和胰岛素抵抗。","authors":"Tahar Hajri, Mohamed Gharib, Thomas Fungwe, Amosy M'Koma","doi":"10.1152/ajpheart.00425.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is associated with excess lipid deposition in nonadipose tissues, leading to increased oxidative stress and insulin resistance. Very low-density lipoprotein receptor (VLDLR), a member of the LDL receptor family, binds and increases the catabolism of triglyceride-rich lipoproteins. Although VLDLR is highly expressed in the heart, its role in obesity-associated oxidative stress and insulin resistance is unclear. Here, we used lean (wild type), genetically obese leptin-deficient (<i>ob/ob</i>), and leptin-VLDLR double-null (<i>ob/ob</i>-VLDLR<sup>-/-</sup>) mice to determine the impact of VLDLR deficiency on obesity-induced oxidative stress and insulin resistance in the heart. Although insulin sensitivity and glucose uptake were reduced in the hearts of <i>ob/ob</i> mice, VLDLR expression was upregulated and was associated with increased VLDL uptake and excess lipid deposition. This was accompanied by an upregulation of cardiac NADPH oxidase (Nox) expression and increased production of Nox-dependent superoxides. Silencing the VLDLR in <i>ob/ob</i> mice had reduced VLDL uptake and prevented excess lipid deposition in the heart, in addition to a reduction of superoxide overproduction and the normalization of insulin sensitivity and glucose uptake. In isolated cardiomyocytes, VLDLR deficiency had prevented VLDL-mediated induction of Nox activity and superoxide overproduction while improving insulin sensitivity and glucose uptake. Our findings indicate that VLDLR deficiency prevents excess lipid accumulation and moderates oxidative stress and insulin resistance in the hearts of obese mice. This effect is linked to the active role of VLDLR in VLDL uptake, which triggers a cascade of events leading to increased Nox activity, superoxide overproduction, and insulin resistance.<b>NEW & NOTEWORTHY</b> Obesity is associated with excess lipid deposition in muscles, which is considered as a leading cause of metabolic dysfunction and oxidative stress. Cellular uptake of lipids is regulated by several membrane receptors, among which is the very low-density lipoprotein receptor (VLDLR). This article provides information on the role of VLDLR in cardiac muscle and how its expression regulates insulin resistance and oxidative stress in the obese mouse model.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H733-H748"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Very low-density lipoprotein receptor mediates triglyceride-rich lipoprotein-induced oxidative stress and insulin resistance.\",\"authors\":\"Tahar Hajri, Mohamed Gharib, Thomas Fungwe, Amosy M'Koma\",\"doi\":\"10.1152/ajpheart.00425.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity is associated with excess lipid deposition in nonadipose tissues, leading to increased oxidative stress and insulin resistance. Very low-density lipoprotein receptor (VLDLR), a member of the LDL receptor family, binds and increases the catabolism of triglyceride-rich lipoproteins. Although VLDLR is highly expressed in the heart, its role in obesity-associated oxidative stress and insulin resistance is unclear. Here, we used lean (wild type), genetically obese leptin-deficient (<i>ob/ob</i>), and leptin-VLDLR double-null (<i>ob/ob</i>-VLDLR<sup>-/-</sup>) mice to determine the impact of VLDLR deficiency on obesity-induced oxidative stress and insulin resistance in the heart. Although insulin sensitivity and glucose uptake were reduced in the hearts of <i>ob/ob</i> mice, VLDLR expression was upregulated and was associated with increased VLDL uptake and excess lipid deposition. This was accompanied by an upregulation of cardiac NADPH oxidase (Nox) expression and increased production of Nox-dependent superoxides. Silencing the VLDLR in <i>ob/ob</i> mice had reduced VLDL uptake and prevented excess lipid deposition in the heart, in addition to a reduction of superoxide overproduction and the normalization of insulin sensitivity and glucose uptake. In isolated cardiomyocytes, VLDLR deficiency had prevented VLDL-mediated induction of Nox activity and superoxide overproduction while improving insulin sensitivity and glucose uptake. Our findings indicate that VLDLR deficiency prevents excess lipid accumulation and moderates oxidative stress and insulin resistance in the hearts of obese mice. This effect is linked to the active role of VLDLR in VLDL uptake, which triggers a cascade of events leading to increased Nox activity, superoxide overproduction, and insulin resistance.<b>NEW & NOTEWORTHY</b> Obesity is associated with excess lipid deposition in muscles, which is considered as a leading cause of metabolic dysfunction and oxidative stress. Cellular uptake of lipids is regulated by several membrane receptors, among which is the very low-density lipoprotein receptor (VLDLR). This article provides information on the role of VLDLR in cardiac muscle and how its expression regulates insulin resistance and oxidative stress in the obese mouse model.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"H733-H748\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00425.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00425.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

肥胖与非脂肪组织中过多的脂质沉积有关,导致氧化应激和胰岛素抵抗增加。极低密度脂蛋白受体(VLDLR)是低密度脂蛋白受体家族的成员,它能结合富含甘油三酯的脂蛋白并增加其分解。虽然 VLDLR 在心脏中高度表达,但它在肥胖相关的氧化应激和胰岛素抵抗中的作用尚不清楚。在这里,我们使用瘦小(WT)、遗传性肥胖瘦素缺陷(ob/ob)和瘦素-VLDLR 双缺失(ob/ob-VLDLR-/-)小鼠来确定 VLDLR 缺失对肥胖诱导的心脏氧化应激和胰岛素抵抗的影响。虽然肥胖/ob小鼠心脏的胰岛素敏感性和葡萄糖摄取量降低,但VLDLR的表达上调,并与VLDL摄取量增加和脂质沉积过多有关。与此同时,心脏 NADPH 氧化酶(Nox)表达上调,Nox 依赖性超氧化物生成增加。沉默肥胖/肥胖小鼠的 VLDLR 可减少 VLDL 摄入,防止心脏脂质过量沉积,此外还可减少超氧化物的过量产生,使胰岛素敏感性和葡萄糖摄取正常化。在离体心肌细胞中,缺乏 VLDLR 可防止 VLDL 介导的 Nox 活性诱导和超氧化物过度生成,同时改善胰岛素敏感性和葡萄糖摄取。我们的研究结果表明,缺乏 VLDLR 可防止肥胖小鼠心脏中过多的脂质积累,并缓和氧化应激和胰岛素抵抗。这种效应与 VLDLR 在 VLDL 摄取中的积极作用有关,VLDLR 的摄取会引发一系列事件,导致 NOX 活性增加、超氧化物过度生成和胰岛素抵抗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Very low-density lipoprotein receptor mediates triglyceride-rich lipoprotein-induced oxidative stress and insulin resistance.

Obesity is associated with excess lipid deposition in nonadipose tissues, leading to increased oxidative stress and insulin resistance. Very low-density lipoprotein receptor (VLDLR), a member of the LDL receptor family, binds and increases the catabolism of triglyceride-rich lipoproteins. Although VLDLR is highly expressed in the heart, its role in obesity-associated oxidative stress and insulin resistance is unclear. Here, we used lean (wild type), genetically obese leptin-deficient (ob/ob), and leptin-VLDLR double-null (ob/ob-VLDLR-/-) mice to determine the impact of VLDLR deficiency on obesity-induced oxidative stress and insulin resistance in the heart. Although insulin sensitivity and glucose uptake were reduced in the hearts of ob/ob mice, VLDLR expression was upregulated and was associated with increased VLDL uptake and excess lipid deposition. This was accompanied by an upregulation of cardiac NADPH oxidase (Nox) expression and increased production of Nox-dependent superoxides. Silencing the VLDLR in ob/ob mice had reduced VLDL uptake and prevented excess lipid deposition in the heart, in addition to a reduction of superoxide overproduction and the normalization of insulin sensitivity and glucose uptake. In isolated cardiomyocytes, VLDLR deficiency had prevented VLDL-mediated induction of Nox activity and superoxide overproduction while improving insulin sensitivity and glucose uptake. Our findings indicate that VLDLR deficiency prevents excess lipid accumulation and moderates oxidative stress and insulin resistance in the hearts of obese mice. This effect is linked to the active role of VLDLR in VLDL uptake, which triggers a cascade of events leading to increased Nox activity, superoxide overproduction, and insulin resistance.NEW & NOTEWORTHY Obesity is associated with excess lipid deposition in muscles, which is considered as a leading cause of metabolic dysfunction and oxidative stress. Cellular uptake of lipids is regulated by several membrane receptors, among which is the very low-density lipoprotein receptor (VLDLR). This article provides information on the role of VLDLR in cardiac muscle and how its expression regulates insulin resistance and oxidative stress in the obese mouse model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信