Alexandru Cernat, Florian Keusch, Ruben L. Bach, Paulina K. Pankowska
{"title":"使用多特征多方法模型估算数字痕迹数据和调查的测量质量","authors":"Alexandru Cernat, Florian Keusch, Ruben L. Bach, Paulina K. Pankowska","doi":"10.1177/08944393241254464","DOIUrl":null,"url":null,"abstract":"Digital trace data are receiving increased attention as a potential way to capture human behavior. Nevertheless, this type of data is far from perfect and may not always provide better data compared to traditional social surveys. In this study we estimate measurement quality of survey and digital trace data on smartphone usage with a MultiTrait MultiMethod (MTMM) model. The experimental design included five topics relating to the use of smartphones (traits) measured with five methods: three different survey scales (a 5- and a 7-point frequency scale and an open-ended question on duration) and two measures from digital trace data (frequency and duration). We show that surveys and digital trace data measures have very low correlation with each other. We also show that all measures are far from perfect and, while digital trace data appears to have often better quality compared to surveys, that is not always the case.","PeriodicalId":49509,"journal":{"name":"Social Science Computer Review","volume":"64 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Measurement Quality in Digital Trace Data and Surveys Using the MultiTrait MultiMethod Model\",\"authors\":\"Alexandru Cernat, Florian Keusch, Ruben L. Bach, Paulina K. Pankowska\",\"doi\":\"10.1177/08944393241254464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital trace data are receiving increased attention as a potential way to capture human behavior. Nevertheless, this type of data is far from perfect and may not always provide better data compared to traditional social surveys. In this study we estimate measurement quality of survey and digital trace data on smartphone usage with a MultiTrait MultiMethod (MTMM) model. The experimental design included five topics relating to the use of smartphones (traits) measured with five methods: three different survey scales (a 5- and a 7-point frequency scale and an open-ended question on duration) and two measures from digital trace data (frequency and duration). We show that surveys and digital trace data measures have very low correlation with each other. We also show that all measures are far from perfect and, while digital trace data appears to have often better quality compared to surveys, that is not always the case.\",\"PeriodicalId\":49509,\"journal\":{\"name\":\"Social Science Computer Review\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Science Computer Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/08944393241254464\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/08944393241254464","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Estimating Measurement Quality in Digital Trace Data and Surveys Using the MultiTrait MultiMethod Model
Digital trace data are receiving increased attention as a potential way to capture human behavior. Nevertheless, this type of data is far from perfect and may not always provide better data compared to traditional social surveys. In this study we estimate measurement quality of survey and digital trace data on smartphone usage with a MultiTrait MultiMethod (MTMM) model. The experimental design included five topics relating to the use of smartphones (traits) measured with five methods: three different survey scales (a 5- and a 7-point frequency scale and an open-ended question on duration) and two measures from digital trace data (frequency and duration). We show that surveys and digital trace data measures have very low correlation with each other. We also show that all measures are far from perfect and, while digital trace data appears to have often better quality compared to surveys, that is not always the case.
期刊介绍:
Unique Scope Social Science Computer Review is an interdisciplinary journal covering social science instructional and research applications of computing, as well as societal impacts of informational technology. Topics included: artificial intelligence, business, computational social science theory, computer-assisted survey research, computer-based qualitative analysis, computer simulation, economic modeling, electronic modeling, electronic publishing, geographic information systems, instrumentation and research tools, public administration, social impacts of computing and telecommunications, software evaluation, world-wide web resources for social scientists. Interdisciplinary Nature Because the Uses and impacts of computing are interdisciplinary, so is Social Science Computer Review. The journal is of direct relevance to scholars and scientists in a wide variety of disciplines. In its pages you''ll find work in the following areas: sociology, anthropology, political science, economics, psychology, computer literacy, computer applications, and methodology.