MASTER:面向工业 4.0 的无服务器边缘计算环境中基于机器学习的冷启动延迟预测框架

Muhammed Golec;Sukhpal Singh Gill;Huaming Wu;Talat Cemre Can;Mustafa Golec;Oktay Cetinkaya;Felix Cuadrado;Ajith Kumar Parlikad;Steve Uhlig
{"title":"MASTER:面向工业 4.0 的无服务器边缘计算环境中基于机器学习的冷启动延迟预测框架","authors":"Muhammed Golec;Sukhpal Singh Gill;Huaming Wu;Talat Cemre Can;Mustafa Golec;Oktay Cetinkaya;Felix Cuadrado;Ajith Kumar Parlikad;Steve Uhlig","doi":"10.1109/JSAS.2024.3396440","DOIUrl":null,"url":null,"abstract":"The integration of serverless edge computing and the Industrial Internet of Things (IIoT) has the potential to optimize industrial production. However, cold start latency is one of the main challenges in this area, resulting in resource waste. To address this issue, we propose a new machine learning-based resource management framework called MASTER which utilizes an extreme gradient boosting (XGBoost) model to predict the cold start latency for Industry 4.0 applications for performance optimization. Furthermore, we created a new cold start dataset using an IIoT scenario (i.e. predictive maintenance) to validate the proposed MASTER framework in serverless edge computing environments. We have evaluated the performance of the MASTER framework using a real-world serverless platform, Google Cloud Platform for single-step prediction (SSP) and multiple-step prediction (MSP) operations and compared it with existing frameworks that used deep deterministic policy gradient (DDPG) and long short-term memory (LSTM) models. The experimental results show that the XGBoost-based resource management framework is the most successful model in predicting cold start with mean absolute percentage error (MAPE) values of 0.23 in SSP and 0.12 in MSP. It has been also identified that the Linear Regression model (utilized in the MASTER framework) has the least computational time (0.03 seconds) as compared to other deep learning and machine learning models considered in this work. Finally, we compare the energy consumption and \n<inline-formula><tex-math>$\\text{CO}_{2}$</tex-math></inline-formula>\n emissions of all models to emphasize resource awareness.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"36-48"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517641","citationCount":"0","resultStr":"{\"title\":\"MASTER: Machine Learning-Based Cold Start Latency Prediction Framework in Serverless Edge Computing Environments for Industry 4.0\",\"authors\":\"Muhammed Golec;Sukhpal Singh Gill;Huaming Wu;Talat Cemre Can;Mustafa Golec;Oktay Cetinkaya;Felix Cuadrado;Ajith Kumar Parlikad;Steve Uhlig\",\"doi\":\"10.1109/JSAS.2024.3396440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of serverless edge computing and the Industrial Internet of Things (IIoT) has the potential to optimize industrial production. However, cold start latency is one of the main challenges in this area, resulting in resource waste. To address this issue, we propose a new machine learning-based resource management framework called MASTER which utilizes an extreme gradient boosting (XGBoost) model to predict the cold start latency for Industry 4.0 applications for performance optimization. Furthermore, we created a new cold start dataset using an IIoT scenario (i.e. predictive maintenance) to validate the proposed MASTER framework in serverless edge computing environments. We have evaluated the performance of the MASTER framework using a real-world serverless platform, Google Cloud Platform for single-step prediction (SSP) and multiple-step prediction (MSP) operations and compared it with existing frameworks that used deep deterministic policy gradient (DDPG) and long short-term memory (LSTM) models. The experimental results show that the XGBoost-based resource management framework is the most successful model in predicting cold start with mean absolute percentage error (MAPE) values of 0.23 in SSP and 0.12 in MSP. It has been also identified that the Linear Regression model (utilized in the MASTER framework) has the least computational time (0.03 seconds) as compared to other deep learning and machine learning models considered in this work. Finally, we compare the energy consumption and \\n<inline-formula><tex-math>$\\\\text{CO}_{2}$</tex-math></inline-formula>\\n emissions of all models to emphasize resource awareness.\",\"PeriodicalId\":100622,\"journal\":{\"name\":\"IEEE Journal of Selected Areas in Sensors\",\"volume\":\"1 \",\"pages\":\"36-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Areas in Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10517641/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10517641/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无服务器边缘计算与工业物联网(IIoT)的整合有望优化工业生产。然而,冷启动延迟是这一领域的主要挑战之一,会造成资源浪费。为解决这一问题,我们提出了一种名为 MASTER 的基于机器学习的新型资源管理框架,该框架利用极端梯度提升(XGBoost)模型预测工业 4.0 应用的冷启动延迟,以实现性能优化。此外,我们还利用 IIoT 场景(即预测性维护)创建了一个新的冷启动数据集,以便在无服务器边缘计算环境中验证拟议的 MASTER 框架。我们利用真实世界的无服务器平台--谷歌云平台(Google Cloud Platform)评估了 MASTER 框架在单步预测(SSP)和多步预测(MSP)操作中的性能,并将其与使用深度确定性策略梯度(DDPG)和长短期记忆(LSTM)模型的现有框架进行了比较。实验结果表明,基于 XGBoost 的资源管理框架是预测冷启动最成功的模型,其平均绝对百分比误差 (MAPE) 值在 SSP 中为 0.23,在 MSP 中为 0.12。我们还发现,与本研究中考虑的其他深度学习和机器学习模型相比,线性回归模型(在 MASTER 框架中使用)的计算时间最短(0.03 秒)。最后,我们比较了所有模型的能耗和 $text{CO}_{2}$排放量,以强调资源意识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MASTER: Machine Learning-Based Cold Start Latency Prediction Framework in Serverless Edge Computing Environments for Industry 4.0
The integration of serverless edge computing and the Industrial Internet of Things (IIoT) has the potential to optimize industrial production. However, cold start latency is one of the main challenges in this area, resulting in resource waste. To address this issue, we propose a new machine learning-based resource management framework called MASTER which utilizes an extreme gradient boosting (XGBoost) model to predict the cold start latency for Industry 4.0 applications for performance optimization. Furthermore, we created a new cold start dataset using an IIoT scenario (i.e. predictive maintenance) to validate the proposed MASTER framework in serverless edge computing environments. We have evaluated the performance of the MASTER framework using a real-world serverless platform, Google Cloud Platform for single-step prediction (SSP) and multiple-step prediction (MSP) operations and compared it with existing frameworks that used deep deterministic policy gradient (DDPG) and long short-term memory (LSTM) models. The experimental results show that the XGBoost-based resource management framework is the most successful model in predicting cold start with mean absolute percentage error (MAPE) values of 0.23 in SSP and 0.12 in MSP. It has been also identified that the Linear Regression model (utilized in the MASTER framework) has the least computational time (0.03 seconds) as compared to other deep learning and machine learning models considered in this work. Finally, we compare the energy consumption and $\text{CO}_{2}$ emissions of all models to emphasize resource awareness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信