网络物理系统中机器学习模型的规避攻击与防御:调查

IF 34.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shunyao Wang;Ryan K. L. Ko;Guangdong Bai;Naipeng Dong;Taejun Choi;Yanjun Zhang
{"title":"网络物理系统中机器学习模型的规避攻击与防御:调查","authors":"Shunyao Wang;Ryan K. L. Ko;Guangdong Bai;Naipeng Dong;Taejun Choi;Yanjun Zhang","doi":"10.1109/COMST.2023.3344808","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPS) are increasingly relying on machine learning (ML) techniques to reduce labor costs and improve efficiency. However, the adoption of ML also exposes CPS to potential adversarial ML attacks witnessed in the literature. Specifically, the increased Internet connectivity in CPS has resulted in a surge in the volume of data generation and communication frequency among devices, thereby expanding the attack surface and attack opportunities for ML adversaries. Among various adversarial ML attacks, evasion attacks are one of the most well-known ones. Therefore, this survey focuses on summarizing the latest research on evasion attack and defense techniques, to understand state-of-the-art ML model security in CPS. To assess the attack effectiveness, this survey proposes an attack taxonomy by introducing quantitative measures such as perturbation level and the number of modified features. Similarly, a defense taxonomy is introduced based on four perspectives demonstrating the defensive techniques from models’ inputs to their outputs. Furthermore, the survey identifies gaps and promising directions that researchers and practitioners can explore to address potential challenges and threats caused by evasion attacks and lays the groundwork for understanding and mitigating the attacks in CPS.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 2","pages":"930-966"},"PeriodicalIF":34.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evasion Attack and Defense on Machine Learning Models in Cyber-Physical Systems: A Survey\",\"authors\":\"Shunyao Wang;Ryan K. L. Ko;Guangdong Bai;Naipeng Dong;Taejun Choi;Yanjun Zhang\",\"doi\":\"10.1109/COMST.2023.3344808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems (CPS) are increasingly relying on machine learning (ML) techniques to reduce labor costs and improve efficiency. However, the adoption of ML also exposes CPS to potential adversarial ML attacks witnessed in the literature. Specifically, the increased Internet connectivity in CPS has resulted in a surge in the volume of data generation and communication frequency among devices, thereby expanding the attack surface and attack opportunities for ML adversaries. Among various adversarial ML attacks, evasion attacks are one of the most well-known ones. Therefore, this survey focuses on summarizing the latest research on evasion attack and defense techniques, to understand state-of-the-art ML model security in CPS. To assess the attack effectiveness, this survey proposes an attack taxonomy by introducing quantitative measures such as perturbation level and the number of modified features. Similarly, a defense taxonomy is introduced based on four perspectives demonstrating the defensive techniques from models’ inputs to their outputs. Furthermore, the survey identifies gaps and promising directions that researchers and practitioners can explore to address potential challenges and threats caused by evasion attacks and lays the groundwork for understanding and mitigating the attacks in CPS.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 2\",\"pages\":\"930-966\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10366507/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10366507/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

网络物理系统(CPS)越来越依赖机器学习(ML)技术来降低人力成本和提高效率。然而,ML 的采用也使 CPS 面临文献中提到的潜在对抗性 ML 攻击。具体来说,CPS 中互联网连接的增加导致数据生成量和设备间通信频率激增,从而扩大了 ML 对手的攻击面和攻击机会。在各种对抗性 ML 攻击中,规避攻击是最著名的攻击之一。因此,本调查重点总结了有关规避攻击和防御技术的最新研究,以了解 CPS 中最先进的 ML 模型安全性。为了评估攻击效果,本调查通过引入扰动级别和修改特征数量等定量指标,提出了攻击分类法。同样,基于从模型输入到输出的四个角度展示防御技术,引入了防御分类法。此外,调查还指出了研究人员和从业人员可以探索的差距和有前途的方向,以应对逃避攻击带来的潜在挑战和威胁,并为理解和缓解 CPS 中的攻击奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evasion Attack and Defense on Machine Learning Models in Cyber-Physical Systems: A Survey
Cyber-physical systems (CPS) are increasingly relying on machine learning (ML) techniques to reduce labor costs and improve efficiency. However, the adoption of ML also exposes CPS to potential adversarial ML attacks witnessed in the literature. Specifically, the increased Internet connectivity in CPS has resulted in a surge in the volume of data generation and communication frequency among devices, thereby expanding the attack surface and attack opportunities for ML adversaries. Among various adversarial ML attacks, evasion attacks are one of the most well-known ones. Therefore, this survey focuses on summarizing the latest research on evasion attack and defense techniques, to understand state-of-the-art ML model security in CPS. To assess the attack effectiveness, this survey proposes an attack taxonomy by introducing quantitative measures such as perturbation level and the number of modified features. Similarly, a defense taxonomy is introduced based on four perspectives demonstrating the defensive techniques from models’ inputs to their outputs. Furthermore, the survey identifies gaps and promising directions that researchers and practitioners can explore to address potential challenges and threats caused by evasion attacks and lays the groundwork for understanding and mitigating the attacks in CPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Surveys and Tutorials
IEEE Communications Surveys and Tutorials COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
80.20
自引率
2.50%
发文量
84
审稿时长
6 months
期刊介绍: IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues. A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信