{"title":"有漂移的一维问题的周期分式安布罗塞蒂-普罗迪","authors":"B. Barrios , L. Carrero , A. Quass","doi":"10.1016/j.na.2024.113563","DOIUrl":null,"url":null,"abstract":"<div><p>We prove Ambrosetti–Prodi type results for periodic solutions of some one-dimensional nonlinear problems that can have drift term whose principal operator is the fractional Laplacian of order <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We establish conditions for the existence and nonexistence of solutions of those problems. The proofs of the existence results are based on the sub-supersolution method combined with topological degree type arguments. We also obtain a priori bounds in order to get multiplicity results. We also prove that the solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> under some regularity assumptions in the nonlinearities, that is, the solutions of the mentioned equations are classical. We finish the work obtaining Ambrosetti-Prodi-type results for a problem with singular nonlinearities.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic fractional Ambrosetti–Prodi for one-dimensional problem with drift\",\"authors\":\"B. Barrios , L. Carrero , A. Quass\",\"doi\":\"10.1016/j.na.2024.113563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove Ambrosetti–Prodi type results for periodic solutions of some one-dimensional nonlinear problems that can have drift term whose principal operator is the fractional Laplacian of order <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We establish conditions for the existence and nonexistence of solutions of those problems. The proofs of the existence results are based on the sub-supersolution method combined with topological degree type arguments. We also obtain a priori bounds in order to get multiplicity results. We also prove that the solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> under some regularity assumptions in the nonlinearities, that is, the solutions of the mentioned equations are classical. We finish the work obtaining Ambrosetti-Prodi-type results for a problem with singular nonlinearities.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000828\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Periodic fractional Ambrosetti–Prodi for one-dimensional problem with drift
We prove Ambrosetti–Prodi type results for periodic solutions of some one-dimensional nonlinear problems that can have drift term whose principal operator is the fractional Laplacian of order . We establish conditions for the existence and nonexistence of solutions of those problems. The proofs of the existence results are based on the sub-supersolution method combined with topological degree type arguments. We also obtain a priori bounds in order to get multiplicity results. We also prove that the solutions are under some regularity assumptions in the nonlinearities, that is, the solutions of the mentioned equations are classical. We finish the work obtaining Ambrosetti-Prodi-type results for a problem with singular nonlinearities.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.