欧盟电力系统碳清除技术不确定性条件下优化的定制分解方法

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Valentina Negri , Daniel Vázquez , Ignacio E. Grossmann , Gonzalo Guillén-Gosálbez
{"title":"欧盟电力系统碳清除技术不确定性条件下优化的定制分解方法","authors":"Valentina Negri ,&nbsp;Daniel Vázquez ,&nbsp;Ignacio E. Grossmann ,&nbsp;Gonzalo Guillén-Gosálbez","doi":"10.1016/j.compchemeng.2024.108691","DOIUrl":null,"url":null,"abstract":"<div><p>The broad portfolio of negative emissions technologies calls for integrated analyses to explore the synergies between them and the power sector, with which they display strong links. These analyses should be conducted at a regional level, considering system uncertainties, assessing local benefits and the impact on carbon removal potential. This study investigates how uncertainty in electricity demand affects the optimal design of integrated carbon removal and power generation systems using multistage stochastic programming. Given the model complexity, we propose a tailored decomposition algorithm by extending previous work on the shrinking horizon approach that reduces the computational time by 90 %, enabling insights into various European scenarios. A combination of conventional technologies and biomass could satisfy the electricity demand while providing up to 9 Gt of net CO<sub>2</sub> removal from the atmosphere. Omitting uncertainties leads to an underestimation of the total cost and the selection of different technologies possibly leading to suboptimal performance.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tailored decomposition approach for optimization under uncertainty of carbon removal technologies in the EU power system\",\"authors\":\"Valentina Negri ,&nbsp;Daniel Vázquez ,&nbsp;Ignacio E. Grossmann ,&nbsp;Gonzalo Guillén-Gosálbez\",\"doi\":\"10.1016/j.compchemeng.2024.108691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The broad portfolio of negative emissions technologies calls for integrated analyses to explore the synergies between them and the power sector, with which they display strong links. These analyses should be conducted at a regional level, considering system uncertainties, assessing local benefits and the impact on carbon removal potential. This study investigates how uncertainty in electricity demand affects the optimal design of integrated carbon removal and power generation systems using multistage stochastic programming. Given the model complexity, we propose a tailored decomposition algorithm by extending previous work on the shrinking horizon approach that reduces the computational time by 90 %, enabling insights into various European scenarios. A combination of conventional technologies and biomass could satisfy the electricity demand while providing up to 9 Gt of net CO<sub>2</sub> removal from the atmosphere. Omitting uncertainties leads to an underestimation of the total cost and the selection of different technologies possibly leading to suboptimal performance.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424001091\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424001091","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

负排放技术的广泛组合要求进行综合分析,以探索这些技术与电力部门之间的协同作用,因为这些技术与电力部门有着密切的联系。这些分析应在区域层面进行,考虑系统的不确定性,评估当地效益以及对碳清除潜力的影响。本研究采用多阶段随机编程法,探讨了电力需求的不确定性如何影响综合碳清除和发电系统的优化设计。考虑到模型的复杂性,我们提出了一种量身定制的分解算法,该算法扩展了之前关于缩小视野方法的工作,将计算时间缩短了 90%,从而能够深入了解欧洲的各种情况。传统技术与生物质能的结合可满足电力需求,同时可从大气中净减排多达 9 千兆吨的二氧化碳。忽略不确定因素会导致低估总成本,选择不同的技术可能会导致次优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tailored decomposition approach for optimization under uncertainty of carbon removal technologies in the EU power system

The broad portfolio of negative emissions technologies calls for integrated analyses to explore the synergies between them and the power sector, with which they display strong links. These analyses should be conducted at a regional level, considering system uncertainties, assessing local benefits and the impact on carbon removal potential. This study investigates how uncertainty in electricity demand affects the optimal design of integrated carbon removal and power generation systems using multistage stochastic programming. Given the model complexity, we propose a tailored decomposition algorithm by extending previous work on the shrinking horizon approach that reduces the computational time by 90 %, enabling insights into various European scenarios. A combination of conventional technologies and biomass could satisfy the electricity demand while providing up to 9 Gt of net CO2 removal from the atmosphere. Omitting uncertainties leads to an underestimation of the total cost and the selection of different technologies possibly leading to suboptimal performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信