{"title":"宁可信其有,不可信其无利用不完善的模型改进预测","authors":"Dong Hwan Oh , Andrew J. Patton","doi":"10.1016/j.jeconom.2024.105767","DOIUrl":null,"url":null,"abstract":"<div><p>Many important economic decisions are based on a parametric forecasting model that is known to be good but imperfect. We propose methods to improve out-of-sample forecasts from a misspecified model by estimating its parameters using a form of local <em>M</em> estimation (thereby nesting local OLS and local MLE), drawing on information from a state variable that is correlated with the misspecification of the model. We theoretically consider the forecast environments in which our approach is likely to offer improvements over standard methods, and we find significant forecast improvements from applying the proposed method across four distinct empirical analyses including volatility forecasting, risk management, and yield curve forecasting.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 1","pages":"Article 105767"},"PeriodicalIF":9.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Better the devil you know: Improved forecasts from imperfect models\",\"authors\":\"Dong Hwan Oh , Andrew J. Patton\",\"doi\":\"10.1016/j.jeconom.2024.105767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many important economic decisions are based on a parametric forecasting model that is known to be good but imperfect. We propose methods to improve out-of-sample forecasts from a misspecified model by estimating its parameters using a form of local <em>M</em> estimation (thereby nesting local OLS and local MLE), drawing on information from a state variable that is correlated with the misspecification of the model. We theoretically consider the forecast environments in which our approach is likely to offer improvements over standard methods, and we find significant forecast improvements from applying the proposed method across four distinct empirical analyses including volatility forecasting, risk management, and yield curve forecasting.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"242 1\",\"pages\":\"Article 105767\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624001131\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001131","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
摘要
许多重要的经济决策都是基于已知良好但不完善的参数预测模型。我们提出了一些方法,通过使用局部 M 估计(从而嵌套局部 OLS 和局部 MLE)的形式来估计模型参数,并利用与模型的误判相关的状态变量信息,从而改进来自误判模型的样本外预测。我们从理论上考虑了我们的方法有可能比标准方法有所改进的预测环境,并发现在波动率预测、风险管理和收益率曲线预测等四种不同的实证分析中,应用所提出的方法能显著提高预测效果。
Better the devil you know: Improved forecasts from imperfect models
Many important economic decisions are based on a parametric forecasting model that is known to be good but imperfect. We propose methods to improve out-of-sample forecasts from a misspecified model by estimating its parameters using a form of local M estimation (thereby nesting local OLS and local MLE), drawing on information from a state variable that is correlated with the misspecification of the model. We theoretically consider the forecast environments in which our approach is likely to offer improvements over standard methods, and we find significant forecast improvements from applying the proposed method across four distinct empirical analyses including volatility forecasting, risk management, and yield curve forecasting.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.