一种基于遗传算法的方法,用于预测涉及 CYP2C8 或 CYP2B6 的代谢药物之间的相互作用。

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Veronica Di Paolo , Francesco Maria Ferrari , Davide Veronese , Italo Poggesi , Luigi Quintieri
{"title":"一种基于遗传算法的方法,用于预测涉及 CYP2C8 或 CYP2B6 的代谢药物之间的相互作用。","authors":"Veronica Di Paolo ,&nbsp;Francesco Maria Ferrari ,&nbsp;Davide Veronese ,&nbsp;Italo Poggesi ,&nbsp;Luigi Quintieri","doi":"10.1016/j.vascn.2024.107516","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives</h3><p>A genetic algorithm (GA) approach was developed to predict drug-drug interactions (DDIs) caused by cytochrome P450 2C8 (CYP2C8) inhibition or cytochrome P450 2B6 (CYP2B6) inhibition or induction. Nighty-eight DDIs, obtained from published in vivo studies in healthy volunteers, have been considered using the area under the plasma drug concentration–time curve (AUC) ratios (i.e., ratios of AUC of the drug substrate administered in combination with a DDI perpetrator to AUC of the drug substrate administered alone) to describe the extent of DDI.</p></div><div><h3>Methods</h3><p>The following parameters were estimated in this approach: the contribution ratios (CR<sub>CYP2B6</sub> and CR<sub>CYP2C8</sub>, i.e., the fraction of the dose metabolized via CYP2B6 or CYP2C8, respectively) and the inhibitory or inducing potency of the perpetrator drug (IR<sub>CYP2B6</sub>, IR<sub>CYP2C8</sub> and IC<sub>CYP2B6</sub>, for inhibition of CYP2B6 and CYP2C8, and induction of CYP2B6, respectively). The workflow consisted of three main phases. First, the initial estimates of the parameters were estimated through GA. Then, the model was validated using an external validation. Finally, the parameter values were refined via a Bayesian orthogonal regression using all data.</p></div><div><h3>Results</h3><p>The AUC ratios of 5 substrates, 11 inhibitors and 19 inducers of CYP2B6, and the AUC ratios of 19 substrates and 23 inhibitors of CYP2C8 were successfully predicted by the developed methodology within 50–200% of observed values.</p></div><div><h3>Conclusions</h3><p>The approach proposed in this work may represent a useful tool for evaluating the suitable doses of a CYP2C8 or CYP2B6 substrates co-administered with perpetrators.</p></div>","PeriodicalId":16767,"journal":{"name":"Journal of pharmacological and toxicological methods","volume":"127 ","pages":"Article 107516"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1056871924000261/pdfft?md5=33a09e114a2fb0594e22eaade2d8a31a&pid=1-s2.0-S1056871924000261-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A genetic algorithm-based approach for the prediction of metabolic drug-drug interactions involving CYP2C8 or CYP2B6\",\"authors\":\"Veronica Di Paolo ,&nbsp;Francesco Maria Ferrari ,&nbsp;Davide Veronese ,&nbsp;Italo Poggesi ,&nbsp;Luigi Quintieri\",\"doi\":\"10.1016/j.vascn.2024.107516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and objectives</h3><p>A genetic algorithm (GA) approach was developed to predict drug-drug interactions (DDIs) caused by cytochrome P450 2C8 (CYP2C8) inhibition or cytochrome P450 2B6 (CYP2B6) inhibition or induction. Nighty-eight DDIs, obtained from published in vivo studies in healthy volunteers, have been considered using the area under the plasma drug concentration–time curve (AUC) ratios (i.e., ratios of AUC of the drug substrate administered in combination with a DDI perpetrator to AUC of the drug substrate administered alone) to describe the extent of DDI.</p></div><div><h3>Methods</h3><p>The following parameters were estimated in this approach: the contribution ratios (CR<sub>CYP2B6</sub> and CR<sub>CYP2C8</sub>, i.e., the fraction of the dose metabolized via CYP2B6 or CYP2C8, respectively) and the inhibitory or inducing potency of the perpetrator drug (IR<sub>CYP2B6</sub>, IR<sub>CYP2C8</sub> and IC<sub>CYP2B6</sub>, for inhibition of CYP2B6 and CYP2C8, and induction of CYP2B6, respectively). The workflow consisted of three main phases. First, the initial estimates of the parameters were estimated through GA. Then, the model was validated using an external validation. Finally, the parameter values were refined via a Bayesian orthogonal regression using all data.</p></div><div><h3>Results</h3><p>The AUC ratios of 5 substrates, 11 inhibitors and 19 inducers of CYP2B6, and the AUC ratios of 19 substrates and 23 inhibitors of CYP2C8 were successfully predicted by the developed methodology within 50–200% of observed values.</p></div><div><h3>Conclusions</h3><p>The approach proposed in this work may represent a useful tool for evaluating the suitable doses of a CYP2C8 or CYP2B6 substrates co-administered with perpetrators.</p></div>\",\"PeriodicalId\":16767,\"journal\":{\"name\":\"Journal of pharmacological and toxicological methods\",\"volume\":\"127 \",\"pages\":\"Article 107516\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1056871924000261/pdfft?md5=33a09e114a2fb0594e22eaade2d8a31a&pid=1-s2.0-S1056871924000261-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological and toxicological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1056871924000261\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological and toxicological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056871924000261","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目标:开发了一种遗传算法(GA)方法来预测由细胞色素 P450 2C8 (CYP2C8) 抑制或细胞色素 P450 2B6 (CYP2B6) 抑制或诱导引起的药物间相互作用(DDI)。从已发表的健康志愿者体内研究中获得的八夜 DDIs,使用血浆药物浓度-时间曲线下面积(AUC)比值(即与 DDI 肇事者联合给药的药物底物的 AUC 与单独给药的药物底物的 AUC 之比)来描述 DDI 的程度:该方法估算了以下参数:贡献比(CRCYP2B6 和 CRCYP2C8,即分别通过 CYP2B6 或 CYP2C8 代谢的剂量比例)和肇事药物的抑制或诱导效力(IRCYP2B6、IRCYP2C8 和 ICCYP2B6,分别表示抑制 CYP2B6 和 CYP2C8 以及诱导 CYP2B6)。工作流程包括三个主要阶段。首先,通过 GA 估算参数的初始估计值。然后,利用外部验证对模型进行验证。最后,通过使用所有数据进行贝叶斯正交回归来完善参数值:结果:所开发的方法成功预测了 CYP2B6 的 5 种底物、11 种抑制剂和 19 种诱导剂的 AUC 比值,以及 CYP2C8 的 19 种底物和 23 种抑制剂的 AUC 比值,预测值均在观察值的 50-200% 范围内:结论:这项工作中提出的方法可能是评估与肇事者合用的 CYP2C8 或 CYP2B6 底物合适剂量的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm-based approach for the prediction of metabolic drug-drug interactions involving CYP2C8 or CYP2B6

Background and objectives

A genetic algorithm (GA) approach was developed to predict drug-drug interactions (DDIs) caused by cytochrome P450 2C8 (CYP2C8) inhibition or cytochrome P450 2B6 (CYP2B6) inhibition or induction. Nighty-eight DDIs, obtained from published in vivo studies in healthy volunteers, have been considered using the area under the plasma drug concentration–time curve (AUC) ratios (i.e., ratios of AUC of the drug substrate administered in combination with a DDI perpetrator to AUC of the drug substrate administered alone) to describe the extent of DDI.

Methods

The following parameters were estimated in this approach: the contribution ratios (CRCYP2B6 and CRCYP2C8, i.e., the fraction of the dose metabolized via CYP2B6 or CYP2C8, respectively) and the inhibitory or inducing potency of the perpetrator drug (IRCYP2B6, IRCYP2C8 and ICCYP2B6, for inhibition of CYP2B6 and CYP2C8, and induction of CYP2B6, respectively). The workflow consisted of three main phases. First, the initial estimates of the parameters were estimated through GA. Then, the model was validated using an external validation. Finally, the parameter values were refined via a Bayesian orthogonal regression using all data.

Results

The AUC ratios of 5 substrates, 11 inhibitors and 19 inducers of CYP2B6, and the AUC ratios of 19 substrates and 23 inhibitors of CYP2C8 were successfully predicted by the developed methodology within 50–200% of observed values.

Conclusions

The approach proposed in this work may represent a useful tool for evaluating the suitable doses of a CYP2C8 or CYP2B6 substrates co-administered with perpetrators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of pharmacological and toxicological methods
Journal of pharmacological and toxicological methods PHARMACOLOGY & PHARMACY-TOXICOLOGY
CiteScore
3.60
自引率
10.50%
发文量
56
审稿时长
26 days
期刊介绍: Journal of Pharmacological and Toxicological Methods publishes original articles on current methods of investigation used in pharmacology and toxicology. Pharmacology and toxicology are defined in the broadest sense, referring to actions of drugs and chemicals on all living systems. With its international editorial board and noted contributors, Journal of Pharmacological and Toxicological Methods is the leading journal devoted exclusively to experimental procedures used by pharmacologists and toxicologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信