{"title":"非规范化继承表征的联想学习","authors":"Niels J. Verosky","doi":"10.1162/neco_a_01675","DOIUrl":null,"url":null,"abstract":"The successor representation is known to relate to temporal associations learned in the temporal context model (Gershman et al., 2012), and subsequent work suggests a wide relevance of the successor representation across spatial, visual, and abstract relational tasks. I demonstrate that the successor representation and purely associative learning have an even deeper relationship than initially indicated: Hebbian temporal associations are an unnormalized form of the successor representation, such that the two converge on an identical representation whenever all states are equally frequent and can correlate highly in practice even when the state distribution is nonuniform.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 7","pages":"1410-1423"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associative Learning of an Unnormalized Successor Representation\",\"authors\":\"Niels J. Verosky\",\"doi\":\"10.1162/neco_a_01675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The successor representation is known to relate to temporal associations learned in the temporal context model (Gershman et al., 2012), and subsequent work suggests a wide relevance of the successor representation across spatial, visual, and abstract relational tasks. I demonstrate that the successor representation and purely associative learning have an even deeper relationship than initially indicated: Hebbian temporal associations are an unnormalized form of the successor representation, such that the two converge on an identical representation whenever all states are equally frequent and can correlate highly in practice even when the state distribution is nonuniform.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 7\",\"pages\":\"1410-1423\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10661281/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10661281/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Associative Learning of an Unnormalized Successor Representation
The successor representation is known to relate to temporal associations learned in the temporal context model (Gershman et al., 2012), and subsequent work suggests a wide relevance of the successor representation across spatial, visual, and abstract relational tasks. I demonstrate that the successor representation and purely associative learning have an even deeper relationship than initially indicated: Hebbian temporal associations are an unnormalized form of the successor representation, such that the two converge on an identical representation whenever all states are equally frequent and can correlate highly in practice even when the state distribution is nonuniform.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.