{"title":"利用贝叶斯因子检测中介效应:性能评估和确定样本量的工具","authors":"Xiao Liu, Zhiyong Zhang, Lijuan Wang","doi":"10.1037/met0000670","DOIUrl":null,"url":null,"abstract":"<p><p>Testing the presence of mediation effects is important in social science research. Recently, Bayesian hypothesis testing with Bayes factors (BFs) has become increasingly popular. However, the use of BFs for testing mediation effects is still under-studied, despite the growing literature on Bayesian mediation analysis. In this study, we systematically examine the performance of the BF for testing the presence versus absence of a mediation effect. Our results showed that the false and/or true positive rates of detecting mediation with the BF can be impacted by the prior specification, including the prior odds of the presence of each path (treatment-mediator path or mediator-outcome path) used in the design stage for data generation and in the analysis stage for calculating the BF of the mediation effect. Based on our examination, we developed an R function and a web application to determine sample sizes for testing mediation effects with the BF. Our study provides insights on the performance of the BF for testing mediation effects and adds to researchers' toolbox of sample size determination for mediation studies. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting mediation effects with the Bayes factor: Performance evaluation and tools for sample size determination.\",\"authors\":\"Xiao Liu, Zhiyong Zhang, Lijuan Wang\",\"doi\":\"10.1037/met0000670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Testing the presence of mediation effects is important in social science research. Recently, Bayesian hypothesis testing with Bayes factors (BFs) has become increasingly popular. However, the use of BFs for testing mediation effects is still under-studied, despite the growing literature on Bayesian mediation analysis. In this study, we systematically examine the performance of the BF for testing the presence versus absence of a mediation effect. Our results showed that the false and/or true positive rates of detecting mediation with the BF can be impacted by the prior specification, including the prior odds of the presence of each path (treatment-mediator path or mediator-outcome path) used in the design stage for data generation and in the analysis stage for calculating the BF of the mediation effect. Based on our examination, we developed an R function and a web application to determine sample sizes for testing mediation effects with the BF. Our study provides insights on the performance of the BF for testing mediation effects and adds to researchers' toolbox of sample size determination for mediation studies. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000670\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000670","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
检验是否存在中介效应在社会科学研究中非常重要。最近,使用贝叶斯因子(BFs)进行贝叶斯假设检验越来越流行。然而,尽管有关贝叶斯中介分析的文献越来越多,但使用贝叶斯因子检验中介效应的研究仍然不足。在本研究中,我们系统地考察了贝叶斯因子在检验中介效应存在与不存在时的表现。我们的研究结果表明,使用贝叶斯中介分析检测中介效应的假阳性率和/或真阳性率会受到先验规范的影响,包括在设计阶段用于生成数据和在分析阶段用于计算中介效应贝叶斯概率的每条路径(治疗-中介路径或中介-结果路径)存在的先验概率。根据我们的研究,我们开发了一个 R 函数和一个网络应用程序,用于确定用 BF 检验中介效应的样本大小。我们的研究为检验中介效应的 BF 性能提供了见解,并为研究人员确定中介研究样本量的工具箱增添了新的内容。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
Detecting mediation effects with the Bayes factor: Performance evaluation and tools for sample size determination.
Testing the presence of mediation effects is important in social science research. Recently, Bayesian hypothesis testing with Bayes factors (BFs) has become increasingly popular. However, the use of BFs for testing mediation effects is still under-studied, despite the growing literature on Bayesian mediation analysis. In this study, we systematically examine the performance of the BF for testing the presence versus absence of a mediation effect. Our results showed that the false and/or true positive rates of detecting mediation with the BF can be impacted by the prior specification, including the prior odds of the presence of each path (treatment-mediator path or mediator-outcome path) used in the design stage for data generation and in the analysis stage for calculating the BF of the mediation effect. Based on our examination, we developed an R function and a web application to determine sample sizes for testing mediation effects with the BF. Our study provides insights on the performance of the BF for testing mediation effects and adds to researchers' toolbox of sample size determination for mediation studies. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.