S M Medvedeva, A Petrou, M Fesatidou, A Gavalas, A A Geronikaki, P I Savosina, D S Druzhilovskiy, V V Poroikov, K S Shikhaliev, V G Kartsev
{"title":"新型混合 N-酰基-[1,2]二硫环戊-[3,4-c]喹啉-1-硫酮的抗炎作用。","authors":"S M Medvedeva, A Petrou, M Fesatidou, A Gavalas, A A Geronikaki, P I Savosina, D S Druzhilovskiy, V V Poroikov, K S Shikhaliev, V G Kartsev","doi":"10.1080/1062936X.2024.2347965","DOIUrl":null,"url":null,"abstract":"<p><p>Most of pharmaceutical agents display a number of biological activities. It is obvious that testing even one compound for thousands of biological activities is not practically possible. A computer-aided prediction is therefore the method of choice in this case to select the most promising bioassays for particular compounds. Using the PASS Online software, we determined the probable anti-inflammatory action of the 12 new hybrid dithioloquinolinethiones derivatives. Chemical similarity search in the World-Wide Approved Drugs (WWAD) and DrugBank databases did not reveal close structural analogues with the anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in the carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds (2a, 3a-3k except for 3j) varied between 52.97% and 68.74%, being higher than the reference drug indomethacin (47%). The most active compounds appeared to be 3h (68.74%), 3k (66.91%) and 3b (63.74%) followed by 3e (61.50%). Thus, based on the in silico predictions a novel class of anti-inflammatory agents was discovered.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"343-366"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory action of new hybrid <i>N</i>-acyl-[1,2]dithiolo-[3,4-<i>c</i>]quinoline-1-thione.\",\"authors\":\"S M Medvedeva, A Petrou, M Fesatidou, A Gavalas, A A Geronikaki, P I Savosina, D S Druzhilovskiy, V V Poroikov, K S Shikhaliev, V G Kartsev\",\"doi\":\"10.1080/1062936X.2024.2347965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most of pharmaceutical agents display a number of biological activities. It is obvious that testing even one compound for thousands of biological activities is not practically possible. A computer-aided prediction is therefore the method of choice in this case to select the most promising bioassays for particular compounds. Using the PASS Online software, we determined the probable anti-inflammatory action of the 12 new hybrid dithioloquinolinethiones derivatives. Chemical similarity search in the World-Wide Approved Drugs (WWAD) and DrugBank databases did not reveal close structural analogues with the anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in the carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds (2a, 3a-3k except for 3j) varied between 52.97% and 68.74%, being higher than the reference drug indomethacin (47%). The most active compounds appeared to be 3h (68.74%), 3k (66.91%) and 3b (63.74%) followed by 3e (61.50%). Thus, based on the in silico predictions a novel class of anti-inflammatory agents was discovered.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\" \",\"pages\":\"343-366\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2024.2347965\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2347965","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Anti-inflammatory action of new hybrid N-acyl-[1,2]dithiolo-[3,4-c]quinoline-1-thione.
Most of pharmaceutical agents display a number of biological activities. It is obvious that testing even one compound for thousands of biological activities is not practically possible. A computer-aided prediction is therefore the method of choice in this case to select the most promising bioassays for particular compounds. Using the PASS Online software, we determined the probable anti-inflammatory action of the 12 new hybrid dithioloquinolinethiones derivatives. Chemical similarity search in the World-Wide Approved Drugs (WWAD) and DrugBank databases did not reveal close structural analogues with the anti-inflammatory action. Experimental testing of anti-inflammatory activity of the synthesized compounds in the carrageenan-induced inflammation mouse model confirmed the computational predictions. The anti-inflammatory activity of the studied compounds (2a, 3a-3k except for 3j) varied between 52.97% and 68.74%, being higher than the reference drug indomethacin (47%). The most active compounds appeared to be 3h (68.74%), 3k (66.91%) and 3b (63.74%) followed by 3e (61.50%). Thus, based on the in silico predictions a novel class of anti-inflammatory agents was discovered.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.