Jianning Li, David G Ellis, Antonio Pepe, Christina Gsaxner, Michele R Aizenberg, Jens Kleesiek, Jan Egger
{"title":"回归本源:使用基于图像的统计形状模型重建大型复杂颅骨缺损。","authors":"Jianning Li, David G Ellis, Antonio Pepe, Christina Gsaxner, Michele R Aizenberg, Jens Kleesiek, Jan Egger","doi":"10.1007/s10916-024-02066-y","DOIUrl":null,"url":null,"abstract":"<p><p>Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-art results on reconstructing synthetic defects. However, existing CNN-based methods have been difficult to translate to clinical practice in cranioplasty, as their performance on large and complex cranial defects remains unsatisfactory. In this paper, we present a statistical shape model (SSM) built directly on the segmentation masks of the skulls represented as binary voxel occupancy grids and evaluate it on several cranial implant design datasets. Results show that, while CNN-based approaches outperform the SSM on synthetic defects, they are inferior to SSM when it comes to large, complex and real-world defects. Experienced neurosurgeons evaluate the implants generated by the SSM to be feasible for clinical use after minor manual corrections. Datasets and the SSM model are publicly available at https://github.com/Jianningli/ssm .</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116219/pdf/","citationCount":"0","resultStr":"{\"title\":\"Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model.\",\"authors\":\"Jianning Li, David G Ellis, Antonio Pepe, Christina Gsaxner, Michele R Aizenberg, Jens Kleesiek, Jan Egger\",\"doi\":\"10.1007/s10916-024-02066-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-art results on reconstructing synthetic defects. However, existing CNN-based methods have been difficult to translate to clinical practice in cranioplasty, as their performance on large and complex cranial defects remains unsatisfactory. In this paper, we present a statistical shape model (SSM) built directly on the segmentation masks of the skulls represented as binary voxel occupancy grids and evaluate it on several cranial implant design datasets. Results show that, while CNN-based approaches outperform the SSM on synthetic defects, they are inferior to SSM when it comes to large, complex and real-world defects. Experienced neurosurgeons evaluate the implants generated by the SSM to be feasible for clinical use after minor manual corrections. Datasets and the SSM model are publicly available at https://github.com/Jianningli/ssm .</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-024-02066-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02066-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Back to the Roots: Reconstructing Large and Complex Cranial Defects using an Image-based Statistical Shape Model.
Designing implants for large and complex cranial defects is a challenging task, even for professional designers. Current efforts on automating the design process focused mainly on convolutional neural networks (CNN), which have produced state-of-the-art results on reconstructing synthetic defects. However, existing CNN-based methods have been difficult to translate to clinical practice in cranioplasty, as their performance on large and complex cranial defects remains unsatisfactory. In this paper, we present a statistical shape model (SSM) built directly on the segmentation masks of the skulls represented as binary voxel occupancy grids and evaluate it on several cranial implant design datasets. Results show that, while CNN-based approaches outperform the SSM on synthetic defects, they are inferior to SSM when it comes to large, complex and real-world defects. Experienced neurosurgeons evaluate the implants generated by the SSM to be feasible for clinical use after minor manual corrections. Datasets and the SSM model are publicly available at https://github.com/Jianningli/ssm .
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.