{"title":"MolPROP:利用多模态语言和图谱融合进行分子特性预测。","authors":"Zachary A. Rollins, Alan C. Cheng, Essam Metwally","doi":"10.1186/s13321-024-00846-9","DOIUrl":null,"url":null,"abstract":"<p>Pretrained deep learning models self-supervised on large datasets of language, image, and graph representations are often fine-tuned on downstream tasks and have demonstrated remarkable adaptability in a variety of applications including chatbots, autonomous driving, and protein folding. Additional research aims to improve performance on downstream tasks by fusing high dimensional data representations across multiple modalities. In this work, we explore a novel fusion of a pretrained language model, ChemBERTa-2, with graph neural networks for the task of molecular property prediction. We benchmark the MolPROP suite of models on seven scaffold split MoleculeNet datasets and compare with state-of-the-art architectures. We find that (1) multimodal property prediction for small molecules can match or significantly outperform modern architectures on hydration free energy (FreeSolv), experimental water solubility (ESOL), lipophilicity (Lipo), and clinical toxicity tasks (ClinTox), (2) the MolPROP multimodal fusion is predominantly beneficial on regression tasks, (3) the ChemBERTa-2 masked language model pretraining task (MLM) outperformed multitask regression pretraining task (MTR) when fused with graph neural networks for multimodal property prediction, and (4) despite improvements from multimodal fusion on regression tasks MolPROP significantly underperforms on some classification tasks. MolPROP has been made available at https://github.com/merck/MolPROP.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00846-9","citationCount":"0","resultStr":"{\"title\":\"MolPROP: Molecular Property prediction with multimodal language and graph fusion\",\"authors\":\"Zachary A. Rollins, Alan C. Cheng, Essam Metwally\",\"doi\":\"10.1186/s13321-024-00846-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pretrained deep learning models self-supervised on large datasets of language, image, and graph representations are often fine-tuned on downstream tasks and have demonstrated remarkable adaptability in a variety of applications including chatbots, autonomous driving, and protein folding. Additional research aims to improve performance on downstream tasks by fusing high dimensional data representations across multiple modalities. In this work, we explore a novel fusion of a pretrained language model, ChemBERTa-2, with graph neural networks for the task of molecular property prediction. We benchmark the MolPROP suite of models on seven scaffold split MoleculeNet datasets and compare with state-of-the-art architectures. We find that (1) multimodal property prediction for small molecules can match or significantly outperform modern architectures on hydration free energy (FreeSolv), experimental water solubility (ESOL), lipophilicity (Lipo), and clinical toxicity tasks (ClinTox), (2) the MolPROP multimodal fusion is predominantly beneficial on regression tasks, (3) the ChemBERTa-2 masked language model pretraining task (MLM) outperformed multitask regression pretraining task (MTR) when fused with graph neural networks for multimodal property prediction, and (4) despite improvements from multimodal fusion on regression tasks MolPROP significantly underperforms on some classification tasks. MolPROP has been made available at https://github.com/merck/MolPROP.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00846-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00846-9\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00846-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
MolPROP: Molecular Property prediction with multimodal language and graph fusion
Pretrained deep learning models self-supervised on large datasets of language, image, and graph representations are often fine-tuned on downstream tasks and have demonstrated remarkable adaptability in a variety of applications including chatbots, autonomous driving, and protein folding. Additional research aims to improve performance on downstream tasks by fusing high dimensional data representations across multiple modalities. In this work, we explore a novel fusion of a pretrained language model, ChemBERTa-2, with graph neural networks for the task of molecular property prediction. We benchmark the MolPROP suite of models on seven scaffold split MoleculeNet datasets and compare with state-of-the-art architectures. We find that (1) multimodal property prediction for small molecules can match or significantly outperform modern architectures on hydration free energy (FreeSolv), experimental water solubility (ESOL), lipophilicity (Lipo), and clinical toxicity tasks (ClinTox), (2) the MolPROP multimodal fusion is predominantly beneficial on regression tasks, (3) the ChemBERTa-2 masked language model pretraining task (MLM) outperformed multitask regression pretraining task (MTR) when fused with graph neural networks for multimodal property prediction, and (4) despite improvements from multimodal fusion on regression tasks MolPROP significantly underperforms on some classification tasks. MolPROP has been made available at https://github.com/merck/MolPROP.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.