里兹投影的点阵梯度估计

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Lars Diening, Julian Rolfes, Abner J. Salgado
{"title":"里兹投影的点阵梯度估计","authors":"Lars Diening, Julian Rolfes, Abner J. Salgado","doi":"10.1137/23m1571800","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1212-1225, June 2024. <br/> Abstract. Let [math] be a convex polytope ([math]). The Ritz projection is the best approximation, in the [math]-norm, to a given function in a finite element space. When such finite element spaces are constructed on the basis of quasiuniform triangulations, we show a pointwise estimate on the Ritz projection. Namely, the gradient at any point in [math] is controlled by the Hardy–Littlewood maximal function of the gradient of the original function at the same point. From this estimate, the stability of the Ritz projection on a wide range of spaces that are of interest in the analysis of PDEs immediately follows. Among those are weighted spaces, Orlicz spaces, and Lorentz spaces.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"67 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise Gradient Estimate of the Ritz Projection\",\"authors\":\"Lars Diening, Julian Rolfes, Abner J. Salgado\",\"doi\":\"10.1137/23m1571800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1212-1225, June 2024. <br/> Abstract. Let [math] be a convex polytope ([math]). The Ritz projection is the best approximation, in the [math]-norm, to a given function in a finite element space. When such finite element spaces are constructed on the basis of quasiuniform triangulations, we show a pointwise estimate on the Ritz projection. Namely, the gradient at any point in [math] is controlled by the Hardy–Littlewood maximal function of the gradient of the original function at the same point. From this estimate, the stability of the Ritz projection on a wide range of spaces that are of interest in the analysis of PDEs immediately follows. Among those are weighted spaces, Orlicz spaces, and Lorentz spaces.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1571800\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1571800","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 3 期第 1212-1225 页,2024 年 6 月。 摘要设 [math] 是一个凸多胞形([math])。里兹投影是有限元空间中给定函数在[math]正态下的最佳近似值。当这种有限元空间是基于准均匀三角形构造时,我们展示了对里兹投影的点估计。也就是说,[math]中任意点的梯度受同一点上原始函数梯度的哈代-利特尔伍德最大函数控制。从这一估计出发,Ritz 投影在 PDE 分析中感兴趣的各种空间上的稳定性也随之而来。其中包括加权空间、奥利奇空间和洛伦兹空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointwise Gradient Estimate of the Ritz Projection
SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1212-1225, June 2024.
Abstract. Let [math] be a convex polytope ([math]). The Ritz projection is the best approximation, in the [math]-norm, to a given function in a finite element space. When such finite element spaces are constructed on the basis of quasiuniform triangulations, we show a pointwise estimate on the Ritz projection. Namely, the gradient at any point in [math] is controlled by the Hardy–Littlewood maximal function of the gradient of the original function at the same point. From this estimate, the stability of the Ritz projection on a wide range of spaces that are of interest in the analysis of PDEs immediately follows. Among those are weighted spaces, Orlicz spaces, and Lorentz spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信