{"title":"二维 WSeNH 中的大谷分裂和空位诱导的谷极化","authors":"Ziqi Wang, Xuening Han and Yan Liang","doi":"10.1039/D4CP01533A","DOIUrl":null,"url":null,"abstract":"<p >The investigation and manipulation of valley pseudospin in promising two-dimensional (2D) semiconductors are essential for accelerating the development of valleytronics. Based on first-principles, we herein report that the WSeNH monolayer is a potential 2D valleytronic material. It is found that stable 2D WSeNH exhibits a semiconducting character with broken inversion symmetry, forming a pair of energy-degenerate but inequivalent valleys at the <em>K</em> and <em>K</em>′ points. Arising from the strong spin–orbit coupling strength governed by the W-d<small><sub><em>xy</em></sub></small>/d<small><sub><em>x</em><small><sup>2</sup></small>–<em>y</em><small><sup>2</sup></small></sub></small> orbitals, it exhibits a large valley splitting of 425 meV at the top of the valence band, which makes it highly plausible for generating the attractive valley Hall effect. Moreover, both valley splitting and optical transition energy can be efficiently modulated by external strain. Furthermore, we find that a considerable valley polarization of 23 meV can be readily realized in 2D WSeNH by introducing hydrogen vacancies. These findings not only broaden the family of 2D valleytronic materials but also provide alternative avenues for valley manipulation.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 24","pages":" 17148-17154"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large valley splitting and vacancy-induced valley polarization in two-dimensional WSeNH†\",\"authors\":\"Ziqi Wang, Xuening Han and Yan Liang\",\"doi\":\"10.1039/D4CP01533A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The investigation and manipulation of valley pseudospin in promising two-dimensional (2D) semiconductors are essential for accelerating the development of valleytronics. Based on first-principles, we herein report that the WSeNH monolayer is a potential 2D valleytronic material. It is found that stable 2D WSeNH exhibits a semiconducting character with broken inversion symmetry, forming a pair of energy-degenerate but inequivalent valleys at the <em>K</em> and <em>K</em>′ points. Arising from the strong spin–orbit coupling strength governed by the W-d<small><sub><em>xy</em></sub></small>/d<small><sub><em>x</em><small><sup>2</sup></small>–<em>y</em><small><sup>2</sup></small></sub></small> orbitals, it exhibits a large valley splitting of 425 meV at the top of the valence band, which makes it highly plausible for generating the attractive valley Hall effect. Moreover, both valley splitting and optical transition energy can be efficiently modulated by external strain. Furthermore, we find that a considerable valley polarization of 23 meV can be readily realized in 2D WSeNH by introducing hydrogen vacancies. These findings not only broaden the family of 2D valleytronic materials but also provide alternative avenues for valley manipulation.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 24\",\"pages\":\" 17148-17154\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01533a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01533a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Large valley splitting and vacancy-induced valley polarization in two-dimensional WSeNH†
The investigation and manipulation of valley pseudospin in promising two-dimensional (2D) semiconductors are essential for accelerating the development of valleytronics. Based on first-principles, we herein report that the WSeNH monolayer is a potential 2D valleytronic material. It is found that stable 2D WSeNH exhibits a semiconducting character with broken inversion symmetry, forming a pair of energy-degenerate but inequivalent valleys at the K and K′ points. Arising from the strong spin–orbit coupling strength governed by the W-dxy/dx2–y2 orbitals, it exhibits a large valley splitting of 425 meV at the top of the valence band, which makes it highly plausible for generating the attractive valley Hall effect. Moreover, both valley splitting and optical transition energy can be efficiently modulated by external strain. Furthermore, we find that a considerable valley polarization of 23 meV can be readily realized in 2D WSeNH by introducing hydrogen vacancies. These findings not only broaden the family of 2D valleytronic materials but also provide alternative avenues for valley manipulation.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.