C. F. Sun, X. Y. Chen, W. L. Mu, G. C. Wang, J. B. You, X. Q. Shao
{"title":"通过选择性雷德贝格泵浦实现中性原子的整体交换和受控交换门","authors":"C. F. Sun, X. Y. Chen, W. L. Mu, G. C. Wang, J. B. You, X. Q. Shao","doi":"10.1140/epjqt/s40507-024-00246-w","DOIUrl":null,"url":null,"abstract":"<div><p>Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00246-w","citationCount":"0","resultStr":"{\"title\":\"Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping\",\"authors\":\"C. F. Sun, X. Y. Chen, W. L. Mu, G. C. Wang, J. B. You, X. Q. Shao\",\"doi\":\"10.1140/epjqt/s40507-024-00246-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00246-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00246-w\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00246-w","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Holonomic swap and controlled-swap gates of neutral atoms via selective Rydberg pumping
Holonomic quantum computing offers a promising paradigm for quantum computation due to its error resistance and the ability to perform universal quantum computations. Here, we propose a scheme for the rapid implementation of a holonomic swap gate in neutral atomic systems, based on the selective Rydberg pumping mechanism. By employing time-dependent soft control, we effectively mitigate the impact of off-resonant terms even at higher driving intensities compared to time-independent driving. This approach accelerates the synthesis of logic gates and passively reduces the decoherence effects. Furthermore, by introducing an additional atom and applying the appropriate driving field, our scheme can be directly extended to implement a three-qubit controlled-swap gate. This advancement makes it a valuable tool for quantum state preparation, quantum switches, and a variational quantum algorithm in neutral atom systems.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.