I. Ogi-Gittins , W.S. Hart , J. Song , R.K. Nash , J. Polonsky , A. Cori , E.M. Hill , R.N. Thompson
{"title":"一种基于模拟的方法,用于从时间汇总的疾病发病率时间序列数据中估算随时间变化的繁殖数量","authors":"I. Ogi-Gittins , W.S. Hart , J. Song , R.K. Nash , J. Polonsky , A. Cori , E.M. Hill , R.N. Thompson","doi":"10.1016/j.epidem.2024.100773","DOIUrl":null,"url":null,"abstract":"<div><p>Tracking pathogen transmissibility during infectious disease outbreaks is essential for assessing the effectiveness of public health measures and planning future control strategies. A key measure of transmissibility is the time-dependent reproduction number, which has been estimated in real-time during outbreaks of a range of pathogens from disease incidence time series data. While commonly used approaches for estimating the time-dependent reproduction number can be reliable when disease incidence is recorded frequently, such incidence data are often aggregated temporally (for example, numbers of cases may be reported weekly rather than daily). As we show, commonly used methods for estimating transmissibility can be unreliable when the timescale of transmission is shorter than the timescale of data recording. To address this, here we develop a simulation-based approach involving Approximate Bayesian Computation for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data. We first use a simulated dataset representative of a situation in which daily disease incidence data are unavailable and only weekly summary values are reported, demonstrating that our method provides accurate estimates of the time-dependent reproduction number under such circumstances. We then apply our method to two outbreak datasets consisting of weekly influenza case numbers in 2019–20 and 2022–23 in Wales (in the United Kingdom). Our simple-to-use approach will allow accurate estimates of time-dependent reproduction numbers to be obtained from temporally aggregated data during future infectious disease outbreaks.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000343/pdfft?md5=70a2d36ac61daf60a8896d1cec2f447e&pid=1-s2.0-S1755436524000343-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data\",\"authors\":\"I. Ogi-Gittins , W.S. Hart , J. Song , R.K. Nash , J. Polonsky , A. Cori , E.M. Hill , R.N. Thompson\",\"doi\":\"10.1016/j.epidem.2024.100773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tracking pathogen transmissibility during infectious disease outbreaks is essential for assessing the effectiveness of public health measures and planning future control strategies. A key measure of transmissibility is the time-dependent reproduction number, which has been estimated in real-time during outbreaks of a range of pathogens from disease incidence time series data. While commonly used approaches for estimating the time-dependent reproduction number can be reliable when disease incidence is recorded frequently, such incidence data are often aggregated temporally (for example, numbers of cases may be reported weekly rather than daily). As we show, commonly used methods for estimating transmissibility can be unreliable when the timescale of transmission is shorter than the timescale of data recording. To address this, here we develop a simulation-based approach involving Approximate Bayesian Computation for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data. We first use a simulated dataset representative of a situation in which daily disease incidence data are unavailable and only weekly summary values are reported, demonstrating that our method provides accurate estimates of the time-dependent reproduction number under such circumstances. We then apply our method to two outbreak datasets consisting of weekly influenza case numbers in 2019–20 and 2022–23 in Wales (in the United Kingdom). Our simple-to-use approach will allow accurate estimates of time-dependent reproduction numbers to be obtained from temporally aggregated data during future infectious disease outbreaks.</p></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755436524000343/pdfft?md5=70a2d36ac61daf60a8896d1cec2f447e&pid=1-s2.0-S1755436524000343-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755436524000343\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436524000343","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
A simulation-based approach for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data
Tracking pathogen transmissibility during infectious disease outbreaks is essential for assessing the effectiveness of public health measures and planning future control strategies. A key measure of transmissibility is the time-dependent reproduction number, which has been estimated in real-time during outbreaks of a range of pathogens from disease incidence time series data. While commonly used approaches for estimating the time-dependent reproduction number can be reliable when disease incidence is recorded frequently, such incidence data are often aggregated temporally (for example, numbers of cases may be reported weekly rather than daily). As we show, commonly used methods for estimating transmissibility can be unreliable when the timescale of transmission is shorter than the timescale of data recording. To address this, here we develop a simulation-based approach involving Approximate Bayesian Computation for estimating the time-dependent reproduction number from temporally aggregated disease incidence time series data. We first use a simulated dataset representative of a situation in which daily disease incidence data are unavailable and only weekly summary values are reported, demonstrating that our method provides accurate estimates of the time-dependent reproduction number under such circumstances. We then apply our method to two outbreak datasets consisting of weekly influenza case numbers in 2019–20 and 2022–23 in Wales (in the United Kingdom). Our simple-to-use approach will allow accurate estimates of time-dependent reproduction numbers to be obtained from temporally aggregated data during future infectious disease outbreaks.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.