多模态融合大脑信号,稳健预测精神病转变。

IF 3 Q2 PSYCHIATRY
Jenna M Reinen, Pablo Polosecki, Eduardo Castro, Cheryl M Corcoran, Guillermo A Cecchi, Tiziano Colibazzi
{"title":"多模态融合大脑信号,稳健预测精神病转变。","authors":"Jenna M Reinen, Pablo Polosecki, Eduardo Castro, Cheryl M Corcoran, Guillermo A Cecchi, Tiziano Colibazzi","doi":"10.1038/s41537-024-00464-2","DOIUrl":null,"url":null,"abstract":"<p><p>The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each modality to inform each other. Baseline multimodal scans (n = 74, 11 converters) included structural, resting-state functional imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC = 0.73 vs. 0.66 in predicting conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature, including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex pathophysiology of psychosis.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"54"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109212/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodal fusion of brain signals for robust prediction of psychosis transition.\",\"authors\":\"Jenna M Reinen, Pablo Polosecki, Eduardo Castro, Cheryl M Corcoran, Guillermo A Cecchi, Tiziano Colibazzi\",\"doi\":\"10.1038/s41537-024-00464-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each modality to inform each other. Baseline multimodal scans (n = 74, 11 converters) included structural, resting-state functional imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC = 0.73 vs. 0.66 in predicting conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature, including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex pathophysiology of psychosis.</p>\",\"PeriodicalId\":74758,\"journal\":{\"name\":\"Schizophrenia (Heidelberg, Germany)\",\"volume\":\"10 1\",\"pages\":\"54\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109212/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-024-00464-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-024-00464-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

对处于精神病临床高风险(CHR)的青少年进行前瞻性研究,包括神经影像学研究,可以利用整合复杂信息的算法识别预测精神病结果的神经特征。在这里,为了识别风险和精神病转换,我们采用了多核学习(MKL),这是一种多模态机器学习方法,可以让每种模态的模式相互借鉴。基线多模态扫描(n = 74,11 名转换者)包括结构、静息态功能成像和弥散加权数据。多模态 MKL 的表现优于单模态模型(预测转换的 AUC = 0.73 对 0.66)。此外,MKL 学习到的模式对训练集的变化具有鲁棒性,这表明它可以识别跨模态冗余和协同作用,从而稳定预测模式。我们发现了许多与文献一致的预测因子,包括额叶皮层、扣带回、丘脑和纹状体。这凸显了利用精神病复杂病理生理学的方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multimodal fusion of brain signals for robust prediction of psychosis transition.

Multimodal fusion of brain signals for robust prediction of psychosis transition.

The prospective study of youths at clinical high risk (CHR) for psychosis, including neuroimaging, can identify neural signatures predictive of psychosis outcomes using algorithms that integrate complex information. Here, to identify risk and psychosis conversion, we implemented multiple kernel learning (MKL), a multimodal machine learning approach allowing patterns from each modality to inform each other. Baseline multimodal scans (n = 74, 11 converters) included structural, resting-state functional imaging, and diffusion-weighted data. Multimodal MKL outperformed unimodal models (AUC = 0.73 vs. 0.66 in predicting conversion). Moreover, patterns learned by MKL were robust to training set variations, suggesting it can identify cross-modality redundancies and synergies to stabilize the predictive pattern. We identified many predictors consistent with the literature, including frontal cortices, cingulate, thalamus, and striatum. This highlights the advantage of methods that leverage the complex pathophysiology of psychosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信