Longfei Liu, Yujie Hang, Rongqin Chen, Xianliang He, Xingliang Jin, Dan Wu, Ye Li
{"title":"LDSG-Net:用于预测重症监护室住院期间急性低血压发作的高效轻量级卷积神经网络。","authors":"Longfei Liu, Yujie Hang, Rongqin Chen, Xianliang He, Xingliang Jin, Dan Wu, Ye Li","doi":"10.1088/1361-6579/ad4e92","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Acute hypotension episode (AHE) is one of the most critical complications in intensive care unit (ICU). A timely and precise AHE prediction system can provide clinicians with sufficient time to respond with proper therapeutic measures, playing a crucial role in saving patients' lives. Recent studies have focused on utilizing more complex models to improve predictive performance. However, these models are not suitable for clinical application due to limited computing resources for bedside monitors.<i>Approach</i>. To address this challenge, we propose an efficient lightweight dilated shuffle group network. It effectively incorporates shuffling operations into grouped convolutions on the channel and dilated convolutions on the temporal dimension, enhancing global and local feature extraction while reducing computational load.<i>Main results</i>. Our benchmarking experiments on the MIMIC-III and VitalDB datasets, comprising 6036 samples from 1304 patients and 2958 samples from 1047 patients, respectively, demonstrate that our model outperforms other state-of-the-art lightweight CNNs in terms of balancing parameters and computational complexity. Additionally, we discovered that the utilization of multiple physiological signals significantly improves the performance of AHE prediction. External validation on the MIMIC-IV dataset confirmed our findings, with prediction accuracy for AHE 5 min prior reaching 93.04% and 92.04% on the MIMIC-III and VitalDB datasets, respectively, and 89.47% in external verification.<i>Significance</i>. Our study demonstrates the potential of lightweight CNN architectures in clinical applications, providing a promising solution for real-time AHE prediction under resource constraints in ICU settings, thereby marking a significant step forward in improving patient care.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LDSG-Net: an efficient lightweight convolutional neural network for acute hypotensive episode prediction during ICU hospitalization.\",\"authors\":\"Longfei Liu, Yujie Hang, Rongqin Chen, Xianliang He, Xingliang Jin, Dan Wu, Ye Li\",\"doi\":\"10.1088/1361-6579/ad4e92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Acute hypotension episode (AHE) is one of the most critical complications in intensive care unit (ICU). A timely and precise AHE prediction system can provide clinicians with sufficient time to respond with proper therapeutic measures, playing a crucial role in saving patients' lives. Recent studies have focused on utilizing more complex models to improve predictive performance. However, these models are not suitable for clinical application due to limited computing resources for bedside monitors.<i>Approach</i>. To address this challenge, we propose an efficient lightweight dilated shuffle group network. It effectively incorporates shuffling operations into grouped convolutions on the channel and dilated convolutions on the temporal dimension, enhancing global and local feature extraction while reducing computational load.<i>Main results</i>. Our benchmarking experiments on the MIMIC-III and VitalDB datasets, comprising 6036 samples from 1304 patients and 2958 samples from 1047 patients, respectively, demonstrate that our model outperforms other state-of-the-art lightweight CNNs in terms of balancing parameters and computational complexity. Additionally, we discovered that the utilization of multiple physiological signals significantly improves the performance of AHE prediction. External validation on the MIMIC-IV dataset confirmed our findings, with prediction accuracy for AHE 5 min prior reaching 93.04% and 92.04% on the MIMIC-III and VitalDB datasets, respectively, and 89.47% in external verification.<i>Significance</i>. Our study demonstrates the potential of lightweight CNN architectures in clinical applications, providing a promising solution for real-time AHE prediction under resource constraints in ICU settings, thereby marking a significant step forward in improving patient care.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ad4e92\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad4e92","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
LDSG-Net: an efficient lightweight convolutional neural network for acute hypotensive episode prediction during ICU hospitalization.
Objective. Acute hypotension episode (AHE) is one of the most critical complications in intensive care unit (ICU). A timely and precise AHE prediction system can provide clinicians with sufficient time to respond with proper therapeutic measures, playing a crucial role in saving patients' lives. Recent studies have focused on utilizing more complex models to improve predictive performance. However, these models are not suitable for clinical application due to limited computing resources for bedside monitors.Approach. To address this challenge, we propose an efficient lightweight dilated shuffle group network. It effectively incorporates shuffling operations into grouped convolutions on the channel and dilated convolutions on the temporal dimension, enhancing global and local feature extraction while reducing computational load.Main results. Our benchmarking experiments on the MIMIC-III and VitalDB datasets, comprising 6036 samples from 1304 patients and 2958 samples from 1047 patients, respectively, demonstrate that our model outperforms other state-of-the-art lightweight CNNs in terms of balancing parameters and computational complexity. Additionally, we discovered that the utilization of multiple physiological signals significantly improves the performance of AHE prediction. External validation on the MIMIC-IV dataset confirmed our findings, with prediction accuracy for AHE 5 min prior reaching 93.04% and 92.04% on the MIMIC-III and VitalDB datasets, respectively, and 89.47% in external verification.Significance. Our study demonstrates the potential of lightweight CNN architectures in clinical applications, providing a promising solution for real-time AHE prediction under resource constraints in ICU settings, thereby marking a significant step forward in improving patient care.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.