J M Rutkowska, T Ghilardi, S V Vacaru, J E van Schaik, M Meyer, S Hunnius, R Oostenveld
{"title":"优化处理表面面部肌电图以识别情绪表达:数据驱动法","authors":"J M Rutkowska, T Ghilardi, S V Vacaru, J E van Schaik, M Meyer, S Hunnius, R Oostenveld","doi":"10.3758/s13428-024-02421-4","DOIUrl":null,"url":null,"abstract":"<p><p>Surface facial electromyography (EMG) is commonly used to detect emotions from subtle facial expressions. Although there are established procedures for collecting EMG data and some aspects of their processing, there is little agreement among researchers about the optimal way to process the EMG signal, so that the study-unrelated variability (noise) is removed, and the emotion-related variability is best detected. The aim of the current paper was to establish an optimal processing pipeline for EMG data for identifying emotional expressions in facial muscles. We identified the most common processing steps from existing literature and created 72 processing pipelines that represented all the different processing choices. We applied these pipelines to a previously published dataset from a facial mimicry experiment, where 100 adult participants observed happy and sad facial expressions, whilst the activity of their facial muscles, zygomaticus major and corrugator supercilii, was recorded with EMG. We used a resampling approach and subsets of the original data to investigate the effect and robustness of different processing choices on the performance of a logistic regression model that predicted the mimicked emotion (happy/sad) from the EMG signal. In addition, we used a random forest model to identify the most important processing steps for the sensitivity of the logistic regression model. Three processing steps were found to be most impactful: baseline correction, standardisation within muscles, and standardisation within subjects. The chosen feature of interest and the signal averaging had little influence on the sensitivity to the effect. We recommend an optimal processing pipeline, share our code and data, and provide a step-by-step walkthrough for researchers.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362446/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal processing of surface facial EMG to identify emotional expressions: A data-driven approach.\",\"authors\":\"J M Rutkowska, T Ghilardi, S V Vacaru, J E van Schaik, M Meyer, S Hunnius, R Oostenveld\",\"doi\":\"10.3758/s13428-024-02421-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surface facial electromyography (EMG) is commonly used to detect emotions from subtle facial expressions. Although there are established procedures for collecting EMG data and some aspects of their processing, there is little agreement among researchers about the optimal way to process the EMG signal, so that the study-unrelated variability (noise) is removed, and the emotion-related variability is best detected. The aim of the current paper was to establish an optimal processing pipeline for EMG data for identifying emotional expressions in facial muscles. We identified the most common processing steps from existing literature and created 72 processing pipelines that represented all the different processing choices. We applied these pipelines to a previously published dataset from a facial mimicry experiment, where 100 adult participants observed happy and sad facial expressions, whilst the activity of their facial muscles, zygomaticus major and corrugator supercilii, was recorded with EMG. We used a resampling approach and subsets of the original data to investigate the effect and robustness of different processing choices on the performance of a logistic regression model that predicted the mimicked emotion (happy/sad) from the EMG signal. In addition, we used a random forest model to identify the most important processing steps for the sensitivity of the logistic regression model. Three processing steps were found to be most impactful: baseline correction, standardisation within muscles, and standardisation within subjects. The chosen feature of interest and the signal averaging had little influence on the sensitivity to the effect. We recommend an optimal processing pipeline, share our code and data, and provide a step-by-step walkthrough for researchers.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02421-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02421-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optimal processing of surface facial EMG to identify emotional expressions: A data-driven approach.
Surface facial electromyography (EMG) is commonly used to detect emotions from subtle facial expressions. Although there are established procedures for collecting EMG data and some aspects of their processing, there is little agreement among researchers about the optimal way to process the EMG signal, so that the study-unrelated variability (noise) is removed, and the emotion-related variability is best detected. The aim of the current paper was to establish an optimal processing pipeline for EMG data for identifying emotional expressions in facial muscles. We identified the most common processing steps from existing literature and created 72 processing pipelines that represented all the different processing choices. We applied these pipelines to a previously published dataset from a facial mimicry experiment, where 100 adult participants observed happy and sad facial expressions, whilst the activity of their facial muscles, zygomaticus major and corrugator supercilii, was recorded with EMG. We used a resampling approach and subsets of the original data to investigate the effect and robustness of different processing choices on the performance of a logistic regression model that predicted the mimicked emotion (happy/sad) from the EMG signal. In addition, we used a random forest model to identify the most important processing steps for the sensitivity of the logistic regression model. Three processing steps were found to be most impactful: baseline correction, standardisation within muscles, and standardisation within subjects. The chosen feature of interest and the signal averaging had little influence on the sensitivity to the effect. We recommend an optimal processing pipeline, share our code and data, and provide a step-by-step walkthrough for researchers.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.