Tobias A. M. Niehoff, Jan ten Napel, Piter Bijma, Torsten Pook, Yvonne C. J. Wientjes, Bernadett Hegedűs, Mario P. L. Calus
{"title":"利用交配信息改进选择决策,考虑孟德尔抽样方差,展望未来两代","authors":"Tobias A. M. Niehoff, Jan ten Napel, Piter Bijma, Torsten Pook, Yvonne C. J. Wientjes, Bernadett Hegedűs, Mario P. L. Calus","doi":"10.1186/s12711-024-00899-2","DOIUrl":null,"url":null,"abstract":"Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected. The ability of individuals to produce high-performing progeny differs because of differences in their breeding values and gametic variances. Differences in gametic variances among individuals are caused by differences in heterozygosity and linkage. The use of the gametic Mendelian sampling variance has been proposed before, for use in the usefulness criterion or Index5, and in this work, we extend existing approaches by not only considering the gametic Mendelian sampling variance of individuals, but also of their potential offspring. Thus, the criteria developed in this study plan one additional generation ahead. For simplicity, we assumed that the true quantitative trait loci (QTL) effects, genetic map and the haplotypes of all animals are known. In this study, we propose a new selection criterion, ExpBVSelGrOff, which describes the genetic level of selected grand-offspring that are produced by selected offspring of a particular mating. We compare our criterion with other published criteria in a stochastic simulation of an ongoing breeding program for 21 generations for proof of concept. ExpBVSelGrOff performed better than all other tested criteria, like the usefulness criterion or Index5 which have been proposed in the literature, without compromising short-term gains. After only five generations, when selection is strong (1%), selection based on ExpBVSelGrOff achieved 5.8% more commercial genetic gain and retained 25% more genetic variance without compromising inbreeding rate compared to selection based only on breeding values. Our proposed selection criterion offers a new tool to accelerate genetic progress for contemporary genomic breeding programs. It retains more genetic variance than previously published criteria that plan less far ahead. Considering future gametic Mendelian sampling variances in the selection process also seems promising for maintaining more genetic variance.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving selection decisions with mating information by accounting for Mendelian sampling variances looking two generations ahead\",\"authors\":\"Tobias A. M. Niehoff, Jan ten Napel, Piter Bijma, Torsten Pook, Yvonne C. J. Wientjes, Bernadett Hegedűs, Mario P. L. Calus\",\"doi\":\"10.1186/s12711-024-00899-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected. The ability of individuals to produce high-performing progeny differs because of differences in their breeding values and gametic variances. Differences in gametic variances among individuals are caused by differences in heterozygosity and linkage. The use of the gametic Mendelian sampling variance has been proposed before, for use in the usefulness criterion or Index5, and in this work, we extend existing approaches by not only considering the gametic Mendelian sampling variance of individuals, but also of their potential offspring. Thus, the criteria developed in this study plan one additional generation ahead. For simplicity, we assumed that the true quantitative trait loci (QTL) effects, genetic map and the haplotypes of all animals are known. In this study, we propose a new selection criterion, ExpBVSelGrOff, which describes the genetic level of selected grand-offspring that are produced by selected offspring of a particular mating. We compare our criterion with other published criteria in a stochastic simulation of an ongoing breeding program for 21 generations for proof of concept. ExpBVSelGrOff performed better than all other tested criteria, like the usefulness criterion or Index5 which have been proposed in the literature, without compromising short-term gains. After only five generations, when selection is strong (1%), selection based on ExpBVSelGrOff achieved 5.8% more commercial genetic gain and retained 25% more genetic variance without compromising inbreeding rate compared to selection based only on breeding values. Our proposed selection criterion offers a new tool to accelerate genetic progress for contemporary genomic breeding programs. It retains more genetic variance than previously published criteria that plan less far ahead. Considering future gametic Mendelian sampling variances in the selection process also seems promising for maintaining more genetic variance.\",\"PeriodicalId\":55120,\"journal\":{\"name\":\"Genetics Selection Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Selection Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12711-024-00899-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00899-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Improving selection decisions with mating information by accounting for Mendelian sampling variances looking two generations ahead
Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected. The ability of individuals to produce high-performing progeny differs because of differences in their breeding values and gametic variances. Differences in gametic variances among individuals are caused by differences in heterozygosity and linkage. The use of the gametic Mendelian sampling variance has been proposed before, for use in the usefulness criterion or Index5, and in this work, we extend existing approaches by not only considering the gametic Mendelian sampling variance of individuals, but also of their potential offspring. Thus, the criteria developed in this study plan one additional generation ahead. For simplicity, we assumed that the true quantitative trait loci (QTL) effects, genetic map and the haplotypes of all animals are known. In this study, we propose a new selection criterion, ExpBVSelGrOff, which describes the genetic level of selected grand-offspring that are produced by selected offspring of a particular mating. We compare our criterion with other published criteria in a stochastic simulation of an ongoing breeding program for 21 generations for proof of concept. ExpBVSelGrOff performed better than all other tested criteria, like the usefulness criterion or Index5 which have been proposed in the literature, without compromising short-term gains. After only five generations, when selection is strong (1%), selection based on ExpBVSelGrOff achieved 5.8% more commercial genetic gain and retained 25% more genetic variance without compromising inbreeding rate compared to selection based only on breeding values. Our proposed selection criterion offers a new tool to accelerate genetic progress for contemporary genomic breeding programs. It retains more genetic variance than previously published criteria that plan less far ahead. Considering future gametic Mendelian sampling variances in the selection process also seems promising for maintaining more genetic variance.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.