分数 m-Laplacian 系统的主曲线及相关的最大值和比较原则

IF 2.5 2区 数学 Q1 MATHEMATICS
Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros
{"title":"分数 m-Laplacian 系统的主曲线及相关的最大值和比较原则","authors":"Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros","doi":"10.1007/s13540-024-00293-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional <i>m</i>-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain <span>\\(\\varOmega \\subset {\\mathbb {R}}^N\\)</span> are also proved. As application, we measure explicitly how small has to be <span>\\(\\text {diam}(\\varOmega )\\)</span> so that weak and strong maximum principles associated to this problem hold in <span>\\(\\varOmega \\)</span>.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"411 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal curves to fractional m-Laplacian systems and related maximum and comparison principles\",\"authors\":\"Anderson L. A. de Araujo, Edir J. F. Leite, Aldo H. S. Medeiros\",\"doi\":\"10.1007/s13540-024-00293-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional <i>m</i>-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain <span>\\\\(\\\\varOmega \\\\subset {\\\\mathbb {R}}^N\\\\)</span> are also proved. As application, we measure explicitly how small has to be <span>\\\\(\\\\text {diam}(\\\\varOmega )\\\\)</span> so that weak and strong maximum principles associated to this problem hold in <span>\\\\(\\\\varOmega \\\\)</span>.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"411 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00293-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00293-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对涉及分数 m-Laplacian 算子的一类重要非线性系统的主特征值以及(弱和强)最大值和比较原则进行了全面研究。我们还证明了该系统的主特征值在有界域 \(\varOmega \subset {\mathbb {R}}^N\) 的直径方面的明确下限。作为应用,我们明确地测量了 \(\text {diam}(\varOmega )\) 必须有多小才能使与这个问题相关的弱最大原则和强最大原则在 \(\varOmega \) 中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Principal curves to fractional m-Laplacian systems and related maximum and comparison principles

Principal curves to fractional m-Laplacian systems and related maximum and comparison principles

In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain \(\varOmega \subset {\mathbb {R}}^N\) are also proved. As application, we measure explicitly how small has to be \(\text {diam}(\varOmega )\) so that weak and strong maximum principles associated to this problem hold in \(\varOmega \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信