{"title":"径向基函数的平均维度","authors":"Christopher Hoyt, Art B. Owen","doi":"10.1137/23m1614833","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1191-1211, June 2024. <br/> Abstract. We show that generalized multiquadric radial basis functions (RBFs) on [math] have a mean dimension that is [math] as [math] with an explicit bound for the implied constant, under moment conditions on their inputs. Under weaker moment conditions the mean dimension still approaches 1. As a consequence, these RBFs become essentially additive as their dimension increases. Gaussian RBFs by contrast can attain any mean dimension between 1 and [math]. We also find that a test integrand due to Keister that has been influential in quasi-Monte Carlo theory has a mean dimension that oscillates between approximately 1 and approximately 2 as the nominal dimension [math] increases.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"70 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Dimension of Radial Basis Functions\",\"authors\":\"Christopher Hoyt, Art B. Owen\",\"doi\":\"10.1137/23m1614833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1191-1211, June 2024. <br/> Abstract. We show that generalized multiquadric radial basis functions (RBFs) on [math] have a mean dimension that is [math] as [math] with an explicit bound for the implied constant, under moment conditions on their inputs. Under weaker moment conditions the mean dimension still approaches 1. As a consequence, these RBFs become essentially additive as their dimension increases. Gaussian RBFs by contrast can attain any mean dimension between 1 and [math]. We also find that a test integrand due to Keister that has been influential in quasi-Monte Carlo theory has a mean dimension that oscillates between approximately 1 and approximately 2 as the nominal dimension [math] increases.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1614833\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1614833","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1191-1211, June 2024. Abstract. We show that generalized multiquadric radial basis functions (RBFs) on [math] have a mean dimension that is [math] as [math] with an explicit bound for the implied constant, under moment conditions on their inputs. Under weaker moment conditions the mean dimension still approaches 1. As a consequence, these RBFs become essentially additive as their dimension increases. Gaussian RBFs by contrast can attain any mean dimension between 1 and [math]. We also find that a test integrand due to Keister that has been influential in quasi-Monte Carlo theory has a mean dimension that oscillates between approximately 1 and approximately 2 as the nominal dimension [math] increases.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.