一个计算神经模型,其中包含蜻蜓摄食网络的内在动力和感觉反馈。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Biological Cybernetics Pub Date : 2024-08-01 Epub Date: 2024-05-20 DOI:10.1007/s00422-024-00991-2
Yanjun Li, Victoria A Webster-Wood, Jeffrey P Gill, Gregory P Sutton, Hillel J Chiel, Roger D Quinn
{"title":"一个计算神经模型,其中包含蜻蜓摄食网络的内在动力和感觉反馈。","authors":"Yanjun Li, Victoria A Webster-Wood, Jeffrey P Gill, Gregory P Sutton, Hillel J Chiel, Roger D Quinn","doi":"10.1007/s00422-024-00991-2","DOIUrl":null,"url":null,"abstract":"<p><p>Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control in Aplysia californica. Using the Synthetic Nervous System framework, we developed a model of Aplysia feeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289348/pdf/","citationCount":"0","resultStr":"{\"title\":\"A computational neural model that incorporates both intrinsic dynamics and sensory feedback in the Aplysia feeding network.\",\"authors\":\"Yanjun Li, Victoria A Webster-Wood, Jeffrey P Gill, Gregory P Sutton, Hillel J Chiel, Roger D Quinn\",\"doi\":\"10.1007/s00422-024-00991-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control in Aplysia californica. Using the Synthetic Nervous System framework, we developed a model of Aplysia feeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00991-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00991-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

研究动物运动控制的神经系统可以揭示动物如何灵活地适应不断变化的环境。我们重点研究了加利福利亚水蚤(Aplysia californica)进食控制的神经基础。利用合成神经系统框架,我们开发了一个兼顾神经生理学合理性和计算复杂性的水蚤摄食神经回路模型。该回路包括神经元、突触和现有文献中确定的反馈途径。我们根据神经元的功能作用将其分为三层和五个子网络。模拟结果表明,电路模型能够捕捉神经元和网络层面的内在动态。结合简化的外周生物力学模型,该模型足以介导三种类似动物的进食行为(咬、吞和排斥)。该模型的运动学、动力学和神经反应也与动物数据具有相似的特征。这些结果强调了感觉反馈在进食过程中的功能作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A computational neural model that incorporates both intrinsic dynamics and sensory feedback in the Aplysia feeding network.

A computational neural model that incorporates both intrinsic dynamics and sensory feedback in the Aplysia feeding network.

Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control in Aplysia californica. Using the Synthetic Nervous System framework, we developed a model of Aplysia feeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信