Bryan J Ranger, Kevin M Moerman, Micha Feigin, Hugh M Herr, Brian W Anthony
{"title":"用于抗压负荷下肌肉骨骼组织评估的三维超声剪切波弹性成像:可行性研究。","authors":"Bryan J Ranger, Kevin M Moerman, Micha Feigin, Hugh M Herr, Brian W Anthony","doi":"10.1177/01617346241253798","DOIUrl":null,"url":null,"abstract":"<p><p>Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"251-262"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Ultrasound Shear Wave Elastography for Musculoskeletal Tissue Assessment Under Compressive Load: A Feasibility Study.\",\"authors\":\"Bryan J Ranger, Kevin M Moerman, Micha Feigin, Hugh M Herr, Brian W Anthony\",\"doi\":\"10.1177/01617346241253798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.</p>\",\"PeriodicalId\":49401,\"journal\":{\"name\":\"Ultrasonic Imaging\",\"volume\":\" \",\"pages\":\"251-262\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonic Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01617346241253798\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346241253798","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
3D Ultrasound Shear Wave Elastography for Musculoskeletal Tissue Assessment Under Compressive Load: A Feasibility Study.
Given its real-time capability to quantify mechanical tissue properties, ultrasound shear wave elastography holds significant promise in clinical musculoskeletal imaging. However, existing shear wave elastography methods fall short in enabling full-limb analysis of 3D anatomical structures under diverse loading conditions, and may introduce measurement bias due to sonographer-applied force on the transducer. These limitations pose numerous challenges, particularly for 3D computational biomechanical tissue modeling in areas like prosthetic socket design. In this feasibility study, a clinical linear ultrasound transducer system with integrated shear wave elastography capabilities was utilized to scan both a calibrated phantom and human limbs in a water tank imaging setup. By conducting 2D and 3D scans under varying compressive loads, this study demonstrates the feasibility of volumetric ultrasound shear wave elastography of human limbs. Our preliminary results showcase a potential method for evaluating 3D spatially varying tissue properties, offering future extensions to computational biomechanical modeling of tissue for various clinical scenarios.
期刊介绍:
Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging