Terezia Kurucova, Kamila Reblova, Pavlina Janovska, Jakub Pawel Porc, Veronika Navrkalova, Sarka Pavlova, Jitka Malcikova, Karla Plevova, Boris Tichy, Michael Doubek, Vitezslav Bryja, Jana Kotaskova, Sarka Pospisilova
{"title":"揭示罕见慢性淋巴细胞白血病亚群的动态和分子图谱:单细胞 RNA 测序的启示。","authors":"Terezia Kurucova, Kamila Reblova, Pavlina Janovska, Jakub Pawel Porc, Veronika Navrkalova, Sarka Pavlova, Jitka Malcikova, Karla Plevova, Boris Tichy, Michael Doubek, Vitezslav Bryja, Jana Kotaskova, Sarka Pospisilova","doi":"10.1002/1878-0261.13663","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2541-2553"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459043/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling the dynamics and molecular landscape of a rare chronic lymphocytic leukemia subpopulation driving refractoriness: insights from single-cell RNA sequencing.\",\"authors\":\"Terezia Kurucova, Kamila Reblova, Pavlina Janovska, Jakub Pawel Porc, Veronika Navrkalova, Sarka Pavlova, Jitka Malcikova, Karla Plevova, Boris Tichy, Michael Doubek, Vitezslav Bryja, Jana Kotaskova, Sarka Pospisilova\",\"doi\":\"10.1002/1878-0261.13663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"2541-2553\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459043/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13663\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13663","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Unveiling the dynamics and molecular landscape of a rare chronic lymphocytic leukemia subpopulation driving refractoriness: insights from single-cell RNA sequencing.
Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.