从机制上理解地塞米松介导的对雷米替韦所致肝毒性的保护作用。

IF 3.2 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Kaiyan Liu, Zhihui Li, Linhao Li, Scott Heyward, Shelley R Wang, Ling He, Hongbing Wang
{"title":"从机制上理解地塞米松介导的对雷米替韦所致肝毒性的保护作用。","authors":"Kaiyan Liu, Zhihui Li, Linhao Li, Scott Heyward, Shelley R Wang, Ling He, Hongbing Wang","doi":"10.1124/molpharm.124.000894","DOIUrl":null,"url":null,"abstract":"<p><p>Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Understanding of Dexamethasone-Mediated Protection against Remdesivir-Induced Hepatotoxicity.\",\"authors\":\"Kaiyan Liu, Zhihui Li, Linhao Li, Scott Heyward, Shelley R Wang, Ling He, Hongbing Wang\",\"doi\":\"10.1124/molpharm.124.000894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.</p>\",\"PeriodicalId\":18767,\"journal\":{\"name\":\"Molecular Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/molpharm.124.000894\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.124.000894","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

雷米替韦(RDV)是一种广谱抗病毒药物,通常与地塞米松(DEX)一起用于需要呼吸支持的住院 COVID-19 患者。潜在的肝脏药物不良反应是与使用 RDV 相关的一个安全问题。我们曾报道过,在培养的人原代肝细胞(HPH)和住院的 COVID-19 患者中,DEX 联合治疗可有效减轻 RDV 引起的肝毒性,并分别降低血清 ALT 和 AST 水平的升高。然而,这种保护性药物-药物相互作用背后的确切机制在很大程度上仍然未知。我们在此表明,通过激活 p38、c-Jun N 端激酶(JNK)和细胞外信号调节激酶 1 和 2(ERK1/2)信号,RDV 可诱导细胞凋亡(裂解 caspases 8、9 和 3)、自噬(自噬体和 LC3-II 增加)和线粒体损伤(膜电位、呼吸、ATP 水平降低,Bax 和释放的细胞色素 C 表达增加)。重要的是,联合使用 DEX 可部分逆转 RDV 诱导的细胞凋亡、自噬和细胞死亡。从机理上讲,DEX通过增强双特异性蛋白磷酸酶1(DUSP1)(一种丝裂原活化蛋白激酶(MAPK)磷酸酶)的表达,以糖皮质激素受体(GR)依赖的方式使p38、JNK和ERK1/2信号失活/去磷酸化。在 HPH 中敲除 GR 可减弱 DEX 介导的 DUSP1 诱导、MAPK 去磷酸化以及对 RDV 引起的肝毒性的保护作用。总之,我们的研究结果表明了一种分子机制,即DEX通过调节GR-DUSP1-MAPK调控轴来减轻RDV对肝脏的不良影响。意义声明 该研究揭示了地塞米松在COVID-19治疗中抵御雷米替韦相关肝损伤的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic Understanding of Dexamethasone-Mediated Protection against Remdesivir-Induced Hepatotoxicity.

Remdesivir (RDV), a broad-spectrum antiviral agent, is often used together with dexamethasone (DEX) for hospitalized COVID-19 patients requiring respiratory support. Potential hepatic adverse drug reaction is a safety concern associated with the use of RDV. We previously reported that DEX cotreatment effectively mitigates RDV-induced hepatotoxicity and reduces elevated serum alanine aminotransferase and aspartate aminotransferase levels in cultured human primary hepatocytes (HPH) and hospitalized COVID-19 patients, respectively. Yet, the precise mechanism behind this protective drug-drug interaction remains largely unknown. Here, we show that through the activation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, RDV induces apoptosis (cleavage of caspases 8, 9, and 3), autophagy (increased autophagosome and LC3-II), and mitochondrial damages (decreased membrane potential, respiration, ATP levels, and increased expression of Bax and the released cytosolic cytochrome C) in HPH. Importantly, cotreatment with DEX partially reversed RDV-induced apoptosis, autophagy, and cell death. Mechanistically, DEX deactivates/dephosphorylates p38, JNK, and ERK1/2 signaling by enhancing the expression of dual specificity protein phosphatase 1 (DUSP1), a mitogen-activated protein kinase (MAPK) phosphatase, in a glucocorticoid receptor (GR)-dependent manner. Knockdown of GR in HPH attenuates DEX-mediated DUSP1 induction, MAPK dephosphorylation, as well as protection against RDV-induced hepatotoxicity. Collectively, our findings suggest a molecular mechanism by which DEX modulates the GR-DUSP1-MAPK regulatory axis to alleviate the adverse actions of RDV in the liver. SIGNIFICANCE STATEMENT: The research uncovers the molecular mechanisms by which dexamethasone safeguards against remdesivir-associated liver damage in the context of COVID-19 treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmacology
Molecular Pharmacology 医学-药学
CiteScore
7.20
自引率
2.80%
发文量
50
审稿时长
3-6 weeks
期刊介绍: Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include: Molecular Signaling / Mechanism of Drug Action Chemical Biology / Drug Discovery Structure of Drug-Receptor Complex Systems Analysis of Drug Action Drug Transport / Metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信