{"title":"PGC-1α在肿瘤发生和发展过程中的多效应调控","authors":"Yan Zhang, Huakan Zhao, Yongsheng Li","doi":"10.1089/ars.2023.0506","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> Mitochondria are recognized as a central metabolic hub with bioenergetic, biosynthetic, and signaling functions that tightly control key cellular processes. As a crucial component of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is involved in regulating various metabolic pathways, including energy metabolism and reactive oxygen species homeostasis. <b><i>Recent Advances:</i></b> Recent studies have highlighted the significant role of PGC-1α in tumorigenesis, cancer progression, and treatment resistance. However, PGC-1α exhibits pleiotropic effects in different cancer types, necessitating a more comprehensive and thorough understanding. <b><i>Critical Issues:</i></b> In this review, we discuss the structure and regulatory mechanisms of PGC-1α, analyze its cellular and metabolic functions, explore its impact on tumorigenesis, and propose potential strategies for targeting PGC-1α. <b>Future Directions</b>: The targeted adjustment of PGC-1α based on the metabolic preferences of different cancer types could offer a hopeful therapeutic approach for both preventing and treating tumors. <i>Antioxid. Redox Signal.</i> 41, 557-572.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"557-572"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pleiotropic Regulation of PGC-1α in Tumor Initiation and Progression.\",\"authors\":\"Yan Zhang, Huakan Zhao, Yongsheng Li\",\"doi\":\"10.1089/ars.2023.0506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Significance:</i></b> Mitochondria are recognized as a central metabolic hub with bioenergetic, biosynthetic, and signaling functions that tightly control key cellular processes. As a crucial component of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is involved in regulating various metabolic pathways, including energy metabolism and reactive oxygen species homeostasis. <b><i>Recent Advances:</i></b> Recent studies have highlighted the significant role of PGC-1α in tumorigenesis, cancer progression, and treatment resistance. However, PGC-1α exhibits pleiotropic effects in different cancer types, necessitating a more comprehensive and thorough understanding. <b><i>Critical Issues:</i></b> In this review, we discuss the structure and regulatory mechanisms of PGC-1α, analyze its cellular and metabolic functions, explore its impact on tumorigenesis, and propose potential strategies for targeting PGC-1α. <b>Future Directions</b>: The targeted adjustment of PGC-1α based on the metabolic preferences of different cancer types could offer a hopeful therapeutic approach for both preventing and treating tumors. <i>Antioxid. Redox Signal.</i> 41, 557-572.</p>\",\"PeriodicalId\":8011,\"journal\":{\"name\":\"Antioxidants & redox signaling\",\"volume\":\" \",\"pages\":\"557-572\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants & redox signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/ars.2023.0506\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0506","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pleiotropic Regulation of PGC-1α in Tumor Initiation and Progression.
Significance: Mitochondria are recognized as a central metabolic hub with bioenergetic, biosynthetic, and signaling functions that tightly control key cellular processes. As a crucial component of mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is involved in regulating various metabolic pathways, including energy metabolism and reactive oxygen species homeostasis. Recent Advances: Recent studies have highlighted the significant role of PGC-1α in tumorigenesis, cancer progression, and treatment resistance. However, PGC-1α exhibits pleiotropic effects in different cancer types, necessitating a more comprehensive and thorough understanding. Critical Issues: In this review, we discuss the structure and regulatory mechanisms of PGC-1α, analyze its cellular and metabolic functions, explore its impact on tumorigenesis, and propose potential strategies for targeting PGC-1α. Future Directions: The targeted adjustment of PGC-1α based on the metabolic preferences of different cancer types could offer a hopeful therapeutic approach for both preventing and treating tumors. Antioxid. Redox Signal. 41, 557-572.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology