Jai Kumar, Smitha Ratheesh, Neeraj Agarwal, Rashmi Sharma
{"title":"利用卫星和数值模型观测数据研究索马里沿海地区的上升流和混合过程:拉格朗日方法","authors":"Jai Kumar, Smitha Ratheesh, Neeraj Agarwal, Rashmi Sharma","doi":"10.1016/j.dsr2.2024.105381","DOIUrl":null,"url":null,"abstract":"<div><p>During the summer monsoon, the Somali region undergoes a significant upwelling phenomenon that enhances plankton productivity, thereby benefiting fisheries. Wind and coastal dynamics initially drive this upwelling, but eventually, eddy flows influence it. Our study explores the interplay between ocean currents, eddies, and chlorophyll-a concentrations using the backward Finite-Size Lyapunov Exponents (bFSLEs) technique. We also delve into the specific role of Ekman transport in distributing chlorophyll-a across the region. The Great Whirl (GW), an anticyclonic eddy, predominantly causes strong downwelling, interrupting the summer monsoon upwelling along the Somali coast longitudinally. Despite the GW's significant impact on moving upwelled water offshore, the influence of downwelling diminishes northward. As a result, the northern Somali coast, especially around 9°N and 10°N, showcases the most extensive offshore upwelling, reaching as far as 55°E. Our findings highlight a robust connection between chlorophyll-a levels and oceanic dynamics, influenced by both currents and eddies, as evidenced by bFSLEs, and by cross-shore Ekman transport, particularly within chlorophyll-a concentrations ranging from 0.2 to 0.6 mg m<sup>−3</sup>. The data suggests that Ekman transport-induced upwelling primarily drives coastal phytoplankton biomass. Furthermore, bFSLEs analysis underlines the supportive role of ocean currents and eddies in the offshore distribution of chlorophyll-a, especially near the coast. Further examination of lagged correlations reveals a temporal lag between peak concentrations of chlorophyll-a and Ekman transport; the lag increases offshore and is at least 9 days near the coast.</p></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"216 ","pages":"Article 105381"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of upwelling and mixing process in the Somali coastal region using satellite and numerical model observations: A Lagrangian approach\",\"authors\":\"Jai Kumar, Smitha Ratheesh, Neeraj Agarwal, Rashmi Sharma\",\"doi\":\"10.1016/j.dsr2.2024.105381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the summer monsoon, the Somali region undergoes a significant upwelling phenomenon that enhances plankton productivity, thereby benefiting fisheries. Wind and coastal dynamics initially drive this upwelling, but eventually, eddy flows influence it. Our study explores the interplay between ocean currents, eddies, and chlorophyll-a concentrations using the backward Finite-Size Lyapunov Exponents (bFSLEs) technique. We also delve into the specific role of Ekman transport in distributing chlorophyll-a across the region. The Great Whirl (GW), an anticyclonic eddy, predominantly causes strong downwelling, interrupting the summer monsoon upwelling along the Somali coast longitudinally. Despite the GW's significant impact on moving upwelled water offshore, the influence of downwelling diminishes northward. As a result, the northern Somali coast, especially around 9°N and 10°N, showcases the most extensive offshore upwelling, reaching as far as 55°E. Our findings highlight a robust connection between chlorophyll-a levels and oceanic dynamics, influenced by both currents and eddies, as evidenced by bFSLEs, and by cross-shore Ekman transport, particularly within chlorophyll-a concentrations ranging from 0.2 to 0.6 mg m<sup>−3</sup>. The data suggests that Ekman transport-induced upwelling primarily drives coastal phytoplankton biomass. Furthermore, bFSLEs analysis underlines the supportive role of ocean currents and eddies in the offshore distribution of chlorophyll-a, especially near the coast. Further examination of lagged correlations reveals a temporal lag between peak concentrations of chlorophyll-a and Ekman transport; the lag increases offshore and is at least 9 days near the coast.</p></div>\",\"PeriodicalId\":11120,\"journal\":{\"name\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"volume\":\"216 \",\"pages\":\"Article 105381\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep-sea Research Part Ii-topical Studies in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967064524000250\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064524000250","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Study of upwelling and mixing process in the Somali coastal region using satellite and numerical model observations: A Lagrangian approach
During the summer monsoon, the Somali region undergoes a significant upwelling phenomenon that enhances plankton productivity, thereby benefiting fisheries. Wind and coastal dynamics initially drive this upwelling, but eventually, eddy flows influence it. Our study explores the interplay between ocean currents, eddies, and chlorophyll-a concentrations using the backward Finite-Size Lyapunov Exponents (bFSLEs) technique. We also delve into the specific role of Ekman transport in distributing chlorophyll-a across the region. The Great Whirl (GW), an anticyclonic eddy, predominantly causes strong downwelling, interrupting the summer monsoon upwelling along the Somali coast longitudinally. Despite the GW's significant impact on moving upwelled water offshore, the influence of downwelling diminishes northward. As a result, the northern Somali coast, especially around 9°N and 10°N, showcases the most extensive offshore upwelling, reaching as far as 55°E. Our findings highlight a robust connection between chlorophyll-a levels and oceanic dynamics, influenced by both currents and eddies, as evidenced by bFSLEs, and by cross-shore Ekman transport, particularly within chlorophyll-a concentrations ranging from 0.2 to 0.6 mg m−3. The data suggests that Ekman transport-induced upwelling primarily drives coastal phytoplankton biomass. Furthermore, bFSLEs analysis underlines the supportive role of ocean currents and eddies in the offshore distribution of chlorophyll-a, especially near the coast. Further examination of lagged correlations reveals a temporal lag between peak concentrations of chlorophyll-a and Ekman transport; the lag increases offshore and is at least 9 days near the coast.
期刊介绍:
Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.