揭示广义伽马分布:从形状到解释

IF 1.4 Q2 MATHEMATICS, APPLIED
Matthias Wagener , Andriette Bekker , Mohammad Arashi , Antonio Punzo
{"title":"揭示广义伽马分布:从形状到解释","authors":"Matthias Wagener ,&nbsp;Andriette Bekker ,&nbsp;Mohammad Arashi ,&nbsp;Antonio Punzo","doi":"10.1016/j.rinam.2024.100461","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce the flexible interpretable gamma (FIG) distribution, with origins in Weibulisation, power weighting, and a stochastic representation. The FIG parameters have been verified graphically, mathematically, and through simulation as having separable roles in influencing the left tail, body, and right tail shape. The generalised gamma (GG) distribution has become a standard model for positive data in statistics due to its interpretable parameters and tractable equations. Although there are many generalised forms of the GG that can provide a better fit to data, none of them extend the GG so that the parameters are interpretable. We conduct simulation studies on the maximum likelihood estimates and respective sub-models of the FIG. Finally, we assess the flexibility of the FIG relative to existing models by applying the FIG model to hand grip strength and insurance loss data.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"22 ","pages":"Article 100461"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000311/pdfft?md5=a96e2eeb85564d5103de1b33cf615df5&pid=1-s2.0-S2590037424000311-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Uncovering a generalised gamma distribution: From shape to interpretation\",\"authors\":\"Matthias Wagener ,&nbsp;Andriette Bekker ,&nbsp;Mohammad Arashi ,&nbsp;Antonio Punzo\",\"doi\":\"10.1016/j.rinam.2024.100461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce the flexible interpretable gamma (FIG) distribution, with origins in Weibulisation, power weighting, and a stochastic representation. The FIG parameters have been verified graphically, mathematically, and through simulation as having separable roles in influencing the left tail, body, and right tail shape. The generalised gamma (GG) distribution has become a standard model for positive data in statistics due to its interpretable parameters and tractable equations. Although there are many generalised forms of the GG that can provide a better fit to data, none of them extend the GG so that the parameters are interpretable. We conduct simulation studies on the maximum likelihood estimates and respective sub-models of the FIG. Finally, we assess the flexibility of the FIG relative to existing models by applying the FIG model to hand grip strength and insurance loss data.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"22 \",\"pages\":\"Article 100461\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000311/pdfft?md5=a96e2eeb85564d5103de1b33cf615df5&pid=1-s2.0-S2590037424000311-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了灵活可解释伽马分布(FIG),它起源于 Weibulisation、幂加权和随机表示法。经图形、数学和模拟验证,FIG 参数在影响左尾、主体和右尾形状方面具有可分离的作用。广义伽马(GG)分布因其可解释的参数和易于理解的方程,已成为统计学中正向数据的标准模型。尽管有许多广义伽马分布的形式可以更好地拟合数据,但它们都没有扩展伽马分布,使其参数可以解释。最后,我们通过将 FIG 模型应用于手部握力和保险损失数据,评估了 FIG 相对于现有模型的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncovering a generalised gamma distribution: From shape to interpretation

In this paper, we introduce the flexible interpretable gamma (FIG) distribution, with origins in Weibulisation, power weighting, and a stochastic representation. The FIG parameters have been verified graphically, mathematically, and through simulation as having separable roles in influencing the left tail, body, and right tail shape. The generalised gamma (GG) distribution has become a standard model for positive data in statistics due to its interpretable parameters and tractable equations. Although there are many generalised forms of the GG that can provide a better fit to data, none of them extend the GG so that the parameters are interpretable. We conduct simulation studies on the maximum likelihood estimates and respective sub-models of the FIG. Finally, we assess the flexibility of the FIG relative to existing models by applying the FIG model to hand grip strength and insurance loss data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信