将 SAM 应用于结肠直肠癌组织病理学图像的瘤芽分割。

Ziyu Su, Wei Chen, Sony Annem, Usama Sajjad, Mostafa Rezapour, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi
{"title":"将 SAM 应用于结肠直肠癌组织病理学图像的瘤芽分割。","authors":"Ziyu Su, Wei Chen, Sony Annem, Usama Sajjad, Mostafa Rezapour, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi","doi":"10.1117/12.3006517","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the third most common cancer in the United States. Tumor Budding (TB) detection and quantification are crucial yet labor-intensive steps in determining the CRC stage through the analysis of histopathology images. To help with this process, we adapt the Segment Anything Model (SAM) on the CRC histopathology images to segment TBs using SAM-Adapter. In this approach, we automatically take task-specific prompts from CRC images and train the SAM model in a parameter-efficient way. We compare the predictions of our model with the predictions from a trained-from-scratch model using the annotations from a pathologist. As a result, our model achieves an intersection over union (IoU) of 0.65 and an instance-level Dice score of 0.75, which are promising in matching the pathologist's TB annotation. We believe our study offers a novel solution to identify TBs on H&E-stained histopathology images. Our study also demonstrates the value of adapting the foundation model for pathology image segmentation tasks.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12933 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099868/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adapting SAM to Histopathology Images for Tumor Bud Segmentation in Colorectal Cancer.\",\"authors\":\"Ziyu Su, Wei Chen, Sony Annem, Usama Sajjad, Mostafa Rezapour, Wendy L Frankel, Metin N Gurcan, M Khalid Khan Niazi\",\"doi\":\"10.1117/12.3006517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is the third most common cancer in the United States. Tumor Budding (TB) detection and quantification are crucial yet labor-intensive steps in determining the CRC stage through the analysis of histopathology images. To help with this process, we adapt the Segment Anything Model (SAM) on the CRC histopathology images to segment TBs using SAM-Adapter. In this approach, we automatically take task-specific prompts from CRC images and train the SAM model in a parameter-efficient way. We compare the predictions of our model with the predictions from a trained-from-scratch model using the annotations from a pathologist. As a result, our model achieves an intersection over union (IoU) of 0.65 and an instance-level Dice score of 0.75, which are promising in matching the pathologist's TB annotation. We believe our study offers a novel solution to identify TBs on H&E-stained histopathology images. Our study also demonstrates the value of adapting the foundation model for pathology image segmentation tasks.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12933 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099868/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结肠直肠癌(CRC)是美国第三大常见癌症。肿瘤萌发(TB)的检测和量化是通过分析组织病理学图像确定 CRC 分期的关键步骤,但却需要耗费大量人力。为了帮助完成这一过程,我们在 CRC 组织病理学图像上调整了 Segment Anything Model (SAM),利用 SAM-Adapter 对 TB 进行分割。在这种方法中,我们自动从 CRC 图像中获取特定任务的提示,并以参数效率高的方式训练 SAM 模型。我们将模型的预测结果与使用病理学家的注释从头开始训练的模型的预测结果进行了比较。结果,我们的模型达到了 0.65 的交集大于联合(IoU)和 0.75 的实例级 Dice 分数,在匹配病理学家的肺结核注释方面表现出色。我们相信,我们的研究为识别 H&E 染色组织病理学图像上的结核病提供了一种新的解决方案。我们的研究还证明了将基础模型应用于病理图像分割任务的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adapting SAM to Histopathology Images for Tumor Bud Segmentation in Colorectal Cancer.

Colorectal cancer (CRC) is the third most common cancer in the United States. Tumor Budding (TB) detection and quantification are crucial yet labor-intensive steps in determining the CRC stage through the analysis of histopathology images. To help with this process, we adapt the Segment Anything Model (SAM) on the CRC histopathology images to segment TBs using SAM-Adapter. In this approach, we automatically take task-specific prompts from CRC images and train the SAM model in a parameter-efficient way. We compare the predictions of our model with the predictions from a trained-from-scratch model using the annotations from a pathologist. As a result, our model achieves an intersection over union (IoU) of 0.65 and an instance-level Dice score of 0.75, which are promising in matching the pathologist's TB annotation. We believe our study offers a novel solution to identify TBs on H&E-stained histopathology images. Our study also demonstrates the value of adapting the foundation model for pathology image segmentation tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信