用于预测脊柱转移手术患者存活率的机器学习模型的开发和内部验证。

IF 2.3 Q2 ORTHOPEDICS
Asian Spine Journal Pub Date : 2024-06-01 Epub Date: 2024-05-20 DOI:10.31616/asj.2023.0314
Borriwat Santipas, Kanyakorn Veerakanjana, Piyalitt Ittichaiwong, Piya Chavalparit, Sirichai Wilartratsami, Panya Luksanapruksa
{"title":"用于预测脊柱转移手术患者存活率的机器学习模型的开发和内部验证。","authors":"Borriwat Santipas, Kanyakorn Veerakanjana, Piyalitt Ittichaiwong, Piya Chavalparit, Sirichai Wilartratsami, Panya Luksanapruksa","doi":"10.31616/asj.2023.0314","DOIUrl":null,"url":null,"abstract":"<p><strong>Study design: </strong>A retrospective study.</p><p><strong>Purpose: </strong>This study aimed to develop machine-learning algorithms for predicting survival in patients who underwent surgery for spinal metastasis.</p><p><strong>Overview of literature: </strong>This study develops machine-learning models to predict postoperative survival in spinal metastasis patients, filling the gaps of traditional prognostic systems. Utilizing data from 389 patients, the study highlights XGBoost and CatBoost algorithms̓ effectiveness for 90, 180, and 365-day survival predictions, with preoperative serum albumin as a key predictor. These models offer a promising approach for enhancing clinical decision-making and personalized patient care.</p><p><strong>Methods: </strong>A registry of patients who underwent surgery (instrumentation, decompression, or fusion) for spinal metastases between 2004 and 2018 was used. The outcome measure was survival at postoperative days 90, 180, and 365. Preoperative variables were used to develop machine-learning algorithms to predict survival chance in each period. The performance of the algorithms was measured using the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>A total of 389 patients were identified, with 90-, 180-, and 365-day mortality rates of 18%, 41%, and 45% postoperatively, respectively. The XGBoost algorithm showed the best performance for predicting 180-day and 365-day survival (AUCs of 0.744 and 0.693, respectively). The CatBoost algorithm demonstrated the best performance for predicting 90-day survival (AUC of 0.758). Serum albumin had the highest positive correlation with survival after surgery.</p><p><strong>Conclusions: </strong>These machine-learning algorithms showed promising results in predicting survival in patients who underwent spinal palliative surgery for spinal metastasis, which may assist surgeons in choosing appropriate treatment and increasing awareness of mortality-related factors before surgery.</p>","PeriodicalId":8555,"journal":{"name":"Asian Spine Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222881/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and internal validation of machine-learning models for predicting survival in patients who underwent surgery for spinal metastases.\",\"authors\":\"Borriwat Santipas, Kanyakorn Veerakanjana, Piyalitt Ittichaiwong, Piya Chavalparit, Sirichai Wilartratsami, Panya Luksanapruksa\",\"doi\":\"10.31616/asj.2023.0314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study design: </strong>A retrospective study.</p><p><strong>Purpose: </strong>This study aimed to develop machine-learning algorithms for predicting survival in patients who underwent surgery for spinal metastasis.</p><p><strong>Overview of literature: </strong>This study develops machine-learning models to predict postoperative survival in spinal metastasis patients, filling the gaps of traditional prognostic systems. Utilizing data from 389 patients, the study highlights XGBoost and CatBoost algorithms̓ effectiveness for 90, 180, and 365-day survival predictions, with preoperative serum albumin as a key predictor. These models offer a promising approach for enhancing clinical decision-making and personalized patient care.</p><p><strong>Methods: </strong>A registry of patients who underwent surgery (instrumentation, decompression, or fusion) for spinal metastases between 2004 and 2018 was used. The outcome measure was survival at postoperative days 90, 180, and 365. Preoperative variables were used to develop machine-learning algorithms to predict survival chance in each period. The performance of the algorithms was measured using the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>A total of 389 patients were identified, with 90-, 180-, and 365-day mortality rates of 18%, 41%, and 45% postoperatively, respectively. The XGBoost algorithm showed the best performance for predicting 180-day and 365-day survival (AUCs of 0.744 and 0.693, respectively). The CatBoost algorithm demonstrated the best performance for predicting 90-day survival (AUC of 0.758). Serum albumin had the highest positive correlation with survival after surgery.</p><p><strong>Conclusions: </strong>These machine-learning algorithms showed promising results in predicting survival in patients who underwent spinal palliative surgery for spinal metastasis, which may assist surgeons in choosing appropriate treatment and increasing awareness of mortality-related factors before surgery.</p>\",\"PeriodicalId\":8555,\"journal\":{\"name\":\"Asian Spine Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222881/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Spine Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31616/asj.2023.0314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Spine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31616/asj.2023.0314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

研究设计目的:本研究旨在开发预测脊柱转移手术患者生存率的机器学习算法:该研究开发了机器学习模型来预测脊柱转移瘤患者的术后生存率,填补了传统预后系统的空白。利用 389 例患者的数据,该研究强调了 XGBoost 和 CatBoost 算法̓ 对 90 天、180 天和 365 天生存率预测的有效性,术前血清白蛋白是关键的预测指标。这些模型为加强临床决策和个性化患者护理提供了一种很有前景的方法:对 2004 年至 2018 年期间因脊柱转移而接受手术(器械治疗、减压或融合)的患者进行登记。结果测量指标为术后 90 天、180 天和 365 天的存活率。术前变量用于开发机器学习算法,以预测每个时期的存活几率。算法的性能使用接收者操作特征曲线下面积(AUC)进行测量:共确定了 389 名患者,术后 90 天、180 天和 365 天的死亡率分别为 18%、41% 和 45%。XGBoost 算法在预测 180 天和 365 天生存率方面表现最佳(AUC 分别为 0.744 和 0.693)。CatBoost 算法在预测 90 天存活率方面表现最佳(AUC 为 0.758)。血清白蛋白与术后生存率的正相关性最高:这些机器学习算法在预测因脊柱转移而接受脊柱姑息手术的患者的生存率方面显示出了良好的效果,可帮助外科医生选择适当的治疗方法,并在手术前提高对死亡率相关因素的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and internal validation of machine-learning models for predicting survival in patients who underwent surgery for spinal metastases.

Study design: A retrospective study.

Purpose: This study aimed to develop machine-learning algorithms for predicting survival in patients who underwent surgery for spinal metastasis.

Overview of literature: This study develops machine-learning models to predict postoperative survival in spinal metastasis patients, filling the gaps of traditional prognostic systems. Utilizing data from 389 patients, the study highlights XGBoost and CatBoost algorithms̓ effectiveness for 90, 180, and 365-day survival predictions, with preoperative serum albumin as a key predictor. These models offer a promising approach for enhancing clinical decision-making and personalized patient care.

Methods: A registry of patients who underwent surgery (instrumentation, decompression, or fusion) for spinal metastases between 2004 and 2018 was used. The outcome measure was survival at postoperative days 90, 180, and 365. Preoperative variables were used to develop machine-learning algorithms to predict survival chance in each period. The performance of the algorithms was measured using the area under the receiver operating characteristic curve (AUC).

Results: A total of 389 patients were identified, with 90-, 180-, and 365-day mortality rates of 18%, 41%, and 45% postoperatively, respectively. The XGBoost algorithm showed the best performance for predicting 180-day and 365-day survival (AUCs of 0.744 and 0.693, respectively). The CatBoost algorithm demonstrated the best performance for predicting 90-day survival (AUC of 0.758). Serum albumin had the highest positive correlation with survival after surgery.

Conclusions: These machine-learning algorithms showed promising results in predicting survival in patients who underwent spinal palliative surgery for spinal metastasis, which may assist surgeons in choosing appropriate treatment and increasing awareness of mortality-related factors before surgery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Spine Journal
Asian Spine Journal ORTHOPEDICS-
CiteScore
5.10
自引率
4.30%
发文量
108
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信