{"title":"葡萄糖激酶调节蛋白 rs780094 多态性与 2 型糖尿病、血脂异常、非酒精性脂肪肝和肾病有关。","authors":"Ashraf Al Madhoun","doi":"10.4239/wjd.v15.i5.814","DOIUrl":null,"url":null,"abstract":"<p><p>In this editorial, we comment on the article by Liu <i>et al</i> published in the recent issue of the <i>World Journal of Diabetes</i> (Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria). Type 2 diabetes mellitus (T2DM) is a chronic disorder characterized by dysregulated glucose homeostasis. The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications, including cardiovascular disease, re-tinopathy, neuropathy, and nephropathy. T2DM arises from a complex interplay between genetic, epigenetic, and environmental factors. Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM. Specifically, variations within the glucokinase regulatory protein (GCKR) gene have been linked to heightened susceptibility to T2DM and its associated complications. The clinical trial by Liu <i>et al</i> further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development. Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype. These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"15 5","pages":"814-817"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099372/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glucokinase regulatory protein rs780094 polymorphism is associated with type 2 diabetes mellitus, dyslipidemia, non-alcoholic fatty liver disease, and nephropathy.\",\"authors\":\"Ashraf Al Madhoun\",\"doi\":\"10.4239/wjd.v15.i5.814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this editorial, we comment on the article by Liu <i>et al</i> published in the recent issue of the <i>World Journal of Diabetes</i> (Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria). Type 2 diabetes mellitus (T2DM) is a chronic disorder characterized by dysregulated glucose homeostasis. The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications, including cardiovascular disease, re-tinopathy, neuropathy, and nephropathy. T2DM arises from a complex interplay between genetic, epigenetic, and environmental factors. Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM. Specifically, variations within the glucokinase regulatory protein (GCKR) gene have been linked to heightened susceptibility to T2DM and its associated complications. The clinical trial by Liu <i>et al</i> further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development. Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype. These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.</p>\",\"PeriodicalId\":48607,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"15 5\",\"pages\":\"814-817\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099372/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v15.i5.814\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v15.i5.814","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Glucokinase regulatory protein rs780094 polymorphism is associated with type 2 diabetes mellitus, dyslipidemia, non-alcoholic fatty liver disease, and nephropathy.
In this editorial, we comment on the article by Liu et al published in the recent issue of the World Journal of Diabetes (Relationship between GCKR gene rs780094 polymorphism and type 2 diabetes with albuminuria). Type 2 diabetes mellitus (T2DM) is a chronic disorder characterized by dysregulated glucose homeostasis. The persistent elevated blood glucose level in T2DM significantly increases the risk of developing severe complications, including cardiovascular disease, re-tinopathy, neuropathy, and nephropathy. T2DM arises from a complex interplay between genetic, epigenetic, and environmental factors. Global genomic studies have identified numerous genetic variations associated with an increased risk of T2DM. Specifically, variations within the glucokinase regulatory protein (GCKR) gene have been linked to heightened susceptibility to T2DM and its associated complications. The clinical trial by Liu et al further elucidates the role of the GCKR rs780094 polymorphism in T2DM and nephropathy development. Their findings demonstrate that individuals carrying the CT or TT genotype at the GCKR rs780094 locus are at a higher risk of developing T2DM with albuminuria compared to those with the CC genotype. These findings highlight the importance of genetic testing and risk assessment in T2DM to develop effective preventive strategies and personalized treatment plans.
期刊介绍:
The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.