Marcel Meta, Maximilian E. Huber, Maurice Birk, Martin Wedele, Milan Ončák and Jennifer Meyer
{"title":"甲烷与钽阳离子在气相中反应形成碳烯的动力学。","authors":"Marcel Meta, Maximilian E. Huber, Maurice Birk, Martin Wedele, Milan Ončák and Jennifer Meyer","doi":"10.1039/D3FD00171G","DOIUrl":null,"url":null,"abstract":"<p >The controlled activation of methane has drawn significant attention throughout various disciplines over the last few decades. In gas-phase experiments, the use of model systems with reduced complexity compared to condensed-phase catalytic systems allows us to investigate the intrinsic reactivity of elementary reactions down to the atomic level. Methane is rather inert in chemical reactions, as the weakening or cleavage of a C–H bond is required to make use of methane as C<small><sub>1</sub></small>-building block. The simplest model system for transition-metal-based catalysts is a mono-atomic metal ion. Only a few atomic transition-metal cations activate methane at room temperature. One of the most efficient elements is tantalum, which forms a carbene and releases molecular hydrogen in the reaction with methane: Ta<small><sup>+</sup></small> + CH<small><sub>4</sub></small> → TaCH<small><sub>2</sub></small><small><sup>+</sup></small> + H<small><sub>2</sub></small>. The reaction takes place at room temperature due to efficient intersystem crossing from the quintet to the triplet surface, <em>i.e.</em>, from the electronic ground state of the tantalum cation to the triplet ground state of the tantalum carbene. This multi-state reactivity is often seen for reactions involving transition-metal centres, but leads to their theoretical treatment being a challenge even today. Chemical reactions, or to be precise reactive collisions, are dynamic processes making their description even more of a challenge to experiment and theory alike. Experimental energy- and angle-differential cross sections allow us to probe the rearrangement of atoms during a reactive collision. By interpreting the scattering signatures, we gain insight into the atomistic mechanisms and can move beyond stationary descriptions. Here, we present a study combining collision energy dependent experimentally measured differential cross sections with <em>ab initio</em> calculations of the minimum energy pathway. Product ion velocity distributions were recorded using our crossed-beam velocity map imaging experiment dedicated to studying transition-metal ion molecule reactions. TaCH<small><sub>2</sub></small><small><sup>+</sup></small> velocity distributions reveal a significant degree of indirect dynamics. However, the scattering distributions also show signatures of rebound dynamics. We compare the present results to the oxygen transfer reaction between Ta<small><sup>+</sup></small> and carbon dioxide, which we recently studied.</p>","PeriodicalId":49075,"journal":{"name":"Faraday Discussions","volume":"251 ","pages":" 587-603"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d3fd00171g?page=search","citationCount":"0","resultStr":"{\"title\":\"Dynamics of carbene formation in the reaction of methane with the tantalum cation in the gas phase†\",\"authors\":\"Marcel Meta, Maximilian E. Huber, Maurice Birk, Martin Wedele, Milan Ončák and Jennifer Meyer\",\"doi\":\"10.1039/D3FD00171G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controlled activation of methane has drawn significant attention throughout various disciplines over the last few decades. In gas-phase experiments, the use of model systems with reduced complexity compared to condensed-phase catalytic systems allows us to investigate the intrinsic reactivity of elementary reactions down to the atomic level. Methane is rather inert in chemical reactions, as the weakening or cleavage of a C–H bond is required to make use of methane as C<small><sub>1</sub></small>-building block. The simplest model system for transition-metal-based catalysts is a mono-atomic metal ion. Only a few atomic transition-metal cations activate methane at room temperature. One of the most efficient elements is tantalum, which forms a carbene and releases molecular hydrogen in the reaction with methane: Ta<small><sup>+</sup></small> + CH<small><sub>4</sub></small> → TaCH<small><sub>2</sub></small><small><sup>+</sup></small> + H<small><sub>2</sub></small>. The reaction takes place at room temperature due to efficient intersystem crossing from the quintet to the triplet surface, <em>i.e.</em>, from the electronic ground state of the tantalum cation to the triplet ground state of the tantalum carbene. This multi-state reactivity is often seen for reactions involving transition-metal centres, but leads to their theoretical treatment being a challenge even today. Chemical reactions, or to be precise reactive collisions, are dynamic processes making their description even more of a challenge to experiment and theory alike. Experimental energy- and angle-differential cross sections allow us to probe the rearrangement of atoms during a reactive collision. By interpreting the scattering signatures, we gain insight into the atomistic mechanisms and can move beyond stationary descriptions. Here, we present a study combining collision energy dependent experimentally measured differential cross sections with <em>ab initio</em> calculations of the minimum energy pathway. Product ion velocity distributions were recorded using our crossed-beam velocity map imaging experiment dedicated to studying transition-metal ion molecule reactions. TaCH<small><sub>2</sub></small><small><sup>+</sup></small> velocity distributions reveal a significant degree of indirect dynamics. However, the scattering distributions also show signatures of rebound dynamics. We compare the present results to the oxygen transfer reaction between Ta<small><sup>+</sup></small> and carbon dioxide, which we recently studied.</p>\",\"PeriodicalId\":49075,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\"251 \",\"pages\":\" 587-603\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/fd/d3fd00171g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/fd/d3fd00171g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/fd/d3fd00171g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
摘要
过去几十年来,甲烷的受控活化引起了各学科的极大关注。在气相实验中,与凝聚相催化系统相比,模型系统的复杂性有所降低,这使得我们能够研究低至原子水平的基本反应的内在反应性。甲烷在化学反应中是相当惰性的,因为要利用甲烷作为 C1 构件,必须削弱或裂解一个 C-H 键。基于过渡金属的催化剂最简单的模型系统是单原子金属离子。在室温下,只有少数过渡金属阳离子原子能激活甲烷。最有效的元素之一是钽,它在与甲烷的反应中形成碳烯并释放出分子氢:Ta+ + CH4 → TaCH2+ + H2。该反应在室温下进行,这是因为系统间从五重面到三重面的高效交叉,即从钽阳离子的电子基态到钽碳烯的三重基态。在涉及过渡金属中心的反应中,这种多态反应性经常出现,但其理论处理至今仍是一项挑战。化学反应,确切地说是反应碰撞,是一个动态过程,因此对它们的描述对实验和理论都是一个挑战。实验性能差和角差截面使我们能够探究反应碰撞过程中原子的重新排列。通过解释散射特征,我们可以深入了解原子机制,从而超越静态描述。在此,我们介绍了一项研究,该研究结合了碰撞能量相关实验测量的微分截面和最小能量路径的 ab initio 计算。我们利用专门研究过渡金属离子分子反应的交叉光束速度图成像实验记录了生成离子的速度分布。TaCH2+ 的速度分布显示了很大程度的间接动力学。不过,散射分布也显示出反弹动力学的特征。我们将本结果与我们最近研究的 Ta+ 与二氧化碳之间的氧转移反应进行了比较。
Dynamics of carbene formation in the reaction of methane with the tantalum cation in the gas phase†
The controlled activation of methane has drawn significant attention throughout various disciplines over the last few decades. In gas-phase experiments, the use of model systems with reduced complexity compared to condensed-phase catalytic systems allows us to investigate the intrinsic reactivity of elementary reactions down to the atomic level. Methane is rather inert in chemical reactions, as the weakening or cleavage of a C–H bond is required to make use of methane as C1-building block. The simplest model system for transition-metal-based catalysts is a mono-atomic metal ion. Only a few atomic transition-metal cations activate methane at room temperature. One of the most efficient elements is tantalum, which forms a carbene and releases molecular hydrogen in the reaction with methane: Ta+ + CH4 → TaCH2+ + H2. The reaction takes place at room temperature due to efficient intersystem crossing from the quintet to the triplet surface, i.e., from the electronic ground state of the tantalum cation to the triplet ground state of the tantalum carbene. This multi-state reactivity is often seen for reactions involving transition-metal centres, but leads to their theoretical treatment being a challenge even today. Chemical reactions, or to be precise reactive collisions, are dynamic processes making their description even more of a challenge to experiment and theory alike. Experimental energy- and angle-differential cross sections allow us to probe the rearrangement of atoms during a reactive collision. By interpreting the scattering signatures, we gain insight into the atomistic mechanisms and can move beyond stationary descriptions. Here, we present a study combining collision energy dependent experimentally measured differential cross sections with ab initio calculations of the minimum energy pathway. Product ion velocity distributions were recorded using our crossed-beam velocity map imaging experiment dedicated to studying transition-metal ion molecule reactions. TaCH2+ velocity distributions reveal a significant degree of indirect dynamics. However, the scattering distributions also show signatures of rebound dynamics. We compare the present results to the oxygen transfer reaction between Ta+ and carbon dioxide, which we recently studied.