恒定曲率曲面上磁盘切线束的霍费尔-泽恩德容量

IF 0.5 4区 数学 Q3 MATHEMATICS
Johanna Bimmermann
{"title":"恒定曲率曲面上磁盘切线束的霍费尔-泽恩德容量","authors":"Johanna Bimmermann","doi":"10.1007/s00013-024-02003-y","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces. We use the fact that the magnetic geodesic flow is totally periodic and can be reparametrized to obtain a Hamiltonian circle action. The oscillation of the Hamiltonian generating the circle action immediately yields a lower bound of the Hofer–Zehnder capacity. The upper bound is obtained from Lu’s bounds of the Hofer–Zehnder capacity using the theory of pseudo-holomorphic curves. In our case, the gradient spheres of the Hamiltonian <i>H</i> will give rise to the non-vanishing Gromov–Witten invariant.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"123 1","pages":"103 - 111"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02003-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces\",\"authors\":\"Johanna Bimmermann\",\"doi\":\"10.1007/s00013-024-02003-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We compute the Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces. We use the fact that the magnetic geodesic flow is totally periodic and can be reparametrized to obtain a Hamiltonian circle action. The oscillation of the Hamiltonian generating the circle action immediately yields a lower bound of the Hofer–Zehnder capacity. The upper bound is obtained from Lu’s bounds of the Hofer–Zehnder capacity using the theory of pseudo-holomorphic curves. In our case, the gradient spheres of the Hamiltonian <i>H</i> will give rise to the non-vanishing Gromov–Witten invariant.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"123 1\",\"pages\":\"103 - 111\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02003-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02003-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02003-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了恒曲率曲面上磁盘切线束的霍费尔-泽恩德容量。我们利用磁性测地流是完全周期性的这一事实,并可以通过重拟态得到哈密顿圆作用。产生圆作用的哈密顿振荡立即产生了霍费尔-泽恩德容量的下限。上界是利用伪全貌曲线理论从 Lu 的霍弗-泽恩德容量边界中得到的。在我们的例子中,哈密顿 H 的梯度球将产生不等的格罗莫夫-维滕不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces

Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces

We compute the Hofer–Zehnder capacity of magnetic disc tangent bundles over constant curvature surfaces. We use the fact that the magnetic geodesic flow is totally periodic and can be reparametrized to obtain a Hamiltonian circle action. The oscillation of the Hamiltonian generating the circle action immediately yields a lower bound of the Hofer–Zehnder capacity. The upper bound is obtained from Lu’s bounds of the Hofer–Zehnder capacity using the theory of pseudo-holomorphic curves. In our case, the gradient spheres of the Hamiltonian H will give rise to the non-vanishing Gromov–Witten invariant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信