针对具有连续域稀疏性约束的逆问题的箱形样条线框架

IF 4.2 2区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mehrsa Pourya;Aleix Boquet-Pujadas;Michael Unser
{"title":"针对具有连续域稀疏性约束的逆问题的箱形样条线框架","authors":"Mehrsa Pourya;Aleix Boquet-Pujadas;Michael Unser","doi":"10.1109/TCI.2024.3402376","DOIUrl":null,"url":null,"abstract":"The formulation of inverse problems in the continuum eliminates discretization errors and allows for the exact incorporation of priors. In this paper, we formulate a continuous-domain inverse problem over a search space of continuous and piecewise-linear functions parameterized by box splines. We present a numerical framework to solve those inverse problems with total variation (TV) or its Hessian-based extension (HTV) as regularizers. We show that the box-spline basis allows for exact and efficient convolution-based expressions for both TV and HTV. Our optimization strategy relies on a multiresolution scheme whereby we progressively refine the solution until its cost stabilizes. We test our framework on linear inverse problems and demonstrate its ability to effectively reach a stage beyond which the refinement of the search space no longer decreases the optimization cost.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"790-805"},"PeriodicalIF":4.2000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Box-Spline Framework for Inverse Problems With Continuous-Domain Sparsity Constraints\",\"authors\":\"Mehrsa Pourya;Aleix Boquet-Pujadas;Michael Unser\",\"doi\":\"10.1109/TCI.2024.3402376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formulation of inverse problems in the continuum eliminates discretization errors and allows for the exact incorporation of priors. In this paper, we formulate a continuous-domain inverse problem over a search space of continuous and piecewise-linear functions parameterized by box splines. We present a numerical framework to solve those inverse problems with total variation (TV) or its Hessian-based extension (HTV) as regularizers. We show that the box-spline basis allows for exact and efficient convolution-based expressions for both TV and HTV. Our optimization strategy relies on a multiresolution scheme whereby we progressively refine the solution until its cost stabilizes. We test our framework on linear inverse problems and demonstrate its ability to effectively reach a stage beyond which the refinement of the search space no longer decreases the optimization cost.\",\"PeriodicalId\":56022,\"journal\":{\"name\":\"IEEE Transactions on Computational Imaging\",\"volume\":\"10 \",\"pages\":\"790-805\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computational Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10533663/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10533663/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

连续域逆问题的提出消除了离散化误差,并允许精确地纳入先验。在本文中,我们提出了一个连续域逆问题,该问题涉及连续和片断线性函数的搜索空间,这些函数的参数是箱形样条曲线。我们提出了一个数值框架,利用总变异(TV)或其基于 Hessian 的扩展(HTV)作为正则来解决这些逆问题。我们的研究表明,箱形样条曲线基础可以为 TV 和 HTV 提供精确、高效的基于卷积的表达式。我们的优化策略依赖于多分辨率方案,通过该方案,我们可以逐步完善解决方案,直到其成本趋于稳定。我们在线性逆问题上测试了我们的框架,并证明它能够有效地达到一个阶段,即搜索空间的细化不再降低优化成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Box-Spline Framework for Inverse Problems With Continuous-Domain Sparsity Constraints
The formulation of inverse problems in the continuum eliminates discretization errors and allows for the exact incorporation of priors. In this paper, we formulate a continuous-domain inverse problem over a search space of continuous and piecewise-linear functions parameterized by box splines. We present a numerical framework to solve those inverse problems with total variation (TV) or its Hessian-based extension (HTV) as regularizers. We show that the box-spline basis allows for exact and efficient convolution-based expressions for both TV and HTV. Our optimization strategy relies on a multiresolution scheme whereby we progressively refine the solution until its cost stabilizes. We test our framework on linear inverse problems and demonstrate its ability to effectively reach a stage beyond which the refinement of the search space no longer decreases the optimization cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computational Imaging
IEEE Transactions on Computational Imaging Mathematics-Computational Mathematics
CiteScore
8.20
自引率
7.40%
发文量
59
期刊介绍: The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信