随机曲面的非交换几何学

IF 0.6 4区 数学 Q3 MATHEMATICS
Andrei Okounkov
{"title":"随机曲面的非交换几何学","authors":"Andrei Okounkov","doi":"10.1134/S0016266324010064","DOIUrl":null,"url":null,"abstract":"<p> We associate a noncommutative curve to a periodic, bipartite, planar dimer model with polygonal boundary. It determines the inverse Kasteleyn matrix and hence all correlations. It may be seen as a quantization of the limit shape construction of Kenyon and the author. We also discuss various directions in which this correspondence may be generalized. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 1","pages":"65 - 79"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0016266324010064.pdf","citationCount":"0","resultStr":"{\"title\":\"Noncommutative Geometry of Random Surfaces\",\"authors\":\"Andrei Okounkov\",\"doi\":\"10.1134/S0016266324010064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We associate a noncommutative curve to a periodic, bipartite, planar dimer model with polygonal boundary. It determines the inverse Kasteleyn matrix and hence all correlations. It may be seen as a quantization of the limit shape construction of Kenyon and the author. We also discuss various directions in which this correspondence may be generalized. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"58 1\",\"pages\":\"65 - 79\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1134/S0016266324010064.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324010064\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324010064","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们将一条非交换曲线与一个具有多边形边界的周期性、双方形、平面二聚体模型联系起来。它决定了逆卡斯特林矩阵,从而决定了所有相关性。这可以看作是凯尼恩和作者的极限形状构造的量化。我们还讨论了这一对应关系的各种推广方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Noncommutative Geometry of Random Surfaces

Noncommutative Geometry of Random Surfaces

We associate a noncommutative curve to a periodic, bipartite, planar dimer model with polygonal boundary. It determines the inverse Kasteleyn matrix and hence all correlations. It may be seen as a quantization of the limit shape construction of Kenyon and the author. We also discuss various directions in which this correspondence may be generalized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信