{"title":"准投影变项对的格罗根迪克环","authors":"Sabir Gusein-Zade, Ignacio Luengo, Alejandro Melle-Hernández","doi":"10.1134/S0016266324010040","DOIUrl":null,"url":null,"abstract":"<p> We define a Grothendieck ring of pairs of complex quasi-projective varieties (consisting of a variety and a subvariety). We describe <span>\\(\\lambda\\)</span>-structures on this ring and a power structure over it. We show that the conjectual symmetric power of the projective line with several orbifold points described by A. Fonarev is consistent with the symmetric power of this line with the set of distinguished points as a pair of varieties. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 1","pages":"33 - 38"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grothendieck Ring of Pairs of Quasi-Projective Varieties\",\"authors\":\"Sabir Gusein-Zade, Ignacio Luengo, Alejandro Melle-Hernández\",\"doi\":\"10.1134/S0016266324010040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We define a Grothendieck ring of pairs of complex quasi-projective varieties (consisting of a variety and a subvariety). We describe <span>\\\\(\\\\lambda\\\\)</span>-structures on this ring and a power structure over it. We show that the conjectual symmetric power of the projective line with several orbifold points described by A. Fonarev is consistent with the symmetric power of this line with the set of distinguished points as a pair of varieties. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"58 1\",\"pages\":\"33 - 38\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324010040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324010040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们定义了一个由一对复杂准投影变体(由一个变体和一个子变体组成)组成的格罗内迪克环。我们描述了这个环上的\(\lambda\)结构和它上面的幂结构。我们证明了 A. Fonarev 所描述的具有多个轨道点的投影线的猜想对称幂与该线的对称幂是一致的,该线具有作为一对变项的区分点集。
Grothendieck Ring of Pairs of Quasi-Projective Varieties
We define a Grothendieck ring of pairs of complex quasi-projective varieties (consisting of a variety and a subvariety). We describe \(\lambda\)-structures on this ring and a power structure over it. We show that the conjectual symmetric power of the projective line with several orbifold points described by A. Fonarev is consistent with the symmetric power of this line with the set of distinguished points as a pair of varieties.
期刊介绍:
Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.