准投影变项对的格罗根迪克环

IF 0.6 4区 数学 Q3 MATHEMATICS
Sabir Gusein-Zade, Ignacio Luengo, Alejandro Melle-Hernández
{"title":"准投影变项对的格罗根迪克环","authors":"Sabir Gusein-Zade,&nbsp;Ignacio Luengo,&nbsp;Alejandro Melle-Hernández","doi":"10.1134/S0016266324010040","DOIUrl":null,"url":null,"abstract":"<p> We define a Grothendieck ring of pairs of complex quasi-projective varieties (consisting of a variety and a subvariety). We describe <span>\\(\\lambda\\)</span>-structures on this ring and a power structure over it. We show that the conjectual symmetric power of the projective line with several orbifold points described by A. Fonarev is consistent with the symmetric power of this line with the set of distinguished points as a pair of varieties. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grothendieck Ring of Pairs of Quasi-Projective Varieties\",\"authors\":\"Sabir Gusein-Zade,&nbsp;Ignacio Luengo,&nbsp;Alejandro Melle-Hernández\",\"doi\":\"10.1134/S0016266324010040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We define a Grothendieck ring of pairs of complex quasi-projective varieties (consisting of a variety and a subvariety). We describe <span>\\\\(\\\\lambda\\\\)</span>-structures on this ring and a power structure over it. We show that the conjectual symmetric power of the projective line with several orbifold points described by A. Fonarev is consistent with the symmetric power of this line with the set of distinguished points as a pair of varieties. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324010040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324010040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们定义了一个由一对复杂准投影变体(由一个变体和一个子变体组成)组成的格罗内迪克环。我们描述了这个环上的\(\lambda\)结构和它上面的幂结构。我们证明了 A. Fonarev 所描述的具有多个轨道点的投影线的猜想对称幂与该线的对称幂是一致的,该线具有作为一对变项的区分点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grothendieck Ring of Pairs of Quasi-Projective Varieties

We define a Grothendieck ring of pairs of complex quasi-projective varieties (consisting of a variety and a subvariety). We describe \(\lambda\)-structures on this ring and a power structure over it. We show that the conjectual symmetric power of the projective line with several orbifold points described by A. Fonarev is consistent with the symmetric power of this line with the set of distinguished points as a pair of varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信