论度量空间的紧凑性

IF 0.6 4区 数学 Q3 MATHEMATICS
Vladimir Bogachev
{"title":"论度量空间的紧凑性","authors":"Vladimir Bogachev","doi":"10.1134/S0016266324010027","DOIUrl":null,"url":null,"abstract":"<p> In this paper, we compare the Stone–Čech compactification <span>\\(\\beta \\mathcal{P}(X)\\)</span> of the space <span>\\(\\mathcal{P}(X)\\)</span> of Radon probability measures on a Tychonoff space <span>\\(X\\)</span>, equipped with the weak topology, with the space <span>\\(\\mathcal{P}(\\beta X)\\)</span> of Radon probability measures on the Stone–Čech compactification <span>\\(\\beta X\\)</span> of the space <span>\\(X\\)</span>. It is shown that for any noncompact metric space <span>\\(X\\)</span>, the compactification <span>\\(\\beta \\mathcal{P}(X)\\)</span> does not coincide with <span>\\(\\mathcal{P}(\\beta X)\\)</span>. We discuss the case of more general Tychonoff spaces and also the case of the Samuel compactification, for which the coincidence holds. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"58 1","pages":"2 - 15"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Compactification of Spaces of Measures\",\"authors\":\"Vladimir Bogachev\",\"doi\":\"10.1134/S0016266324010027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In this paper, we compare the Stone–Čech compactification <span>\\\\(\\\\beta \\\\mathcal{P}(X)\\\\)</span> of the space <span>\\\\(\\\\mathcal{P}(X)\\\\)</span> of Radon probability measures on a Tychonoff space <span>\\\\(X\\\\)</span>, equipped with the weak topology, with the space <span>\\\\(\\\\mathcal{P}(\\\\beta X)\\\\)</span> of Radon probability measures on the Stone–Čech compactification <span>\\\\(\\\\beta X\\\\)</span> of the space <span>\\\\(X\\\\)</span>. It is shown that for any noncompact metric space <span>\\\\(X\\\\)</span>, the compactification <span>\\\\(\\\\beta \\\\mathcal{P}(X)\\\\)</span> does not coincide with <span>\\\\(\\\\mathcal{P}(\\\\beta X)\\\\)</span>. We discuss the case of more general Tychonoff spaces and also the case of the Samuel compactification, for which the coincidence holds. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"58 1\",\"pages\":\"2 - 15\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266324010027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266324010027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们比较了Tychonoff空间\(X)上Radon概率度量的空间\(\mathcal{P}(X)\)的Stone-Čech压缩(\beta \mathcal{P}(X)\)、上的拉顿概率度量的空间(\(\mathcal{P}(\beta X))的斯通切奇紧凑化(\(\beta X\) of the space \(X\))。研究表明,对于任何非紧凑的度量空间 (X),紧凑化 \(\beta \mathcal{P}(X)\) 与 \(\mathcal{P}(\beta X)\)并不重合。我们讨论了更一般的泰克诺夫空间的情况,也讨论了萨缪尔紧凑化的情况,对于这些情况,重合是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Compactification of Spaces of Measures

In this paper, we compare the Stone–Čech compactification \(\beta \mathcal{P}(X)\) of the space \(\mathcal{P}(X)\) of Radon probability measures on a Tychonoff space \(X\), equipped with the weak topology, with the space \(\mathcal{P}(\beta X)\) of Radon probability measures on the Stone–Čech compactification \(\beta X\) of the space \(X\). It is shown that for any noncompact metric space \(X\), the compactification \(\beta \mathcal{P}(X)\) does not coincide with \(\mathcal{P}(\beta X)\). We discuss the case of more general Tychonoff spaces and also the case of the Samuel compactification, for which the coincidence holds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信