交通流量预测:三维自适应多模块联合建模方法:整合时空模式,捕捉全局特征

IF 3.4 3区 经济学 Q1 ECONOMICS
Zain Ul Abideen, Xiaodong Sun, Chao Sun
{"title":"交通流量预测:三维自适应多模块联合建模方法:整合时空模式,捕捉全局特征","authors":"Zain Ul Abideen,&nbsp;Xiaodong Sun,&nbsp;Chao Sun","doi":"10.1002/for.3147","DOIUrl":null,"url":null,"abstract":"<p>The challenges in citywide traffic flow are intricate, encompassing various factors like temporal and spatial dependencies, holidays, and weather. Despite the complexity, there are still research gaps in effectively incorporating these spatio-temporal relations through deep learning. Addressing these gaps is crucial for tackling issues such as traffic congestion, public safety, and efficient traffic management within cities. This paper underscores notable research gaps, including the development of models capable of handling both local and global traffic flow patterns, integrating multi-modal data sources, and effectively managing spatio-temporal dependencies. In this paper, we proposed a novel model named 3D spatial–temporal-based adaptive modeling graph convolutional network (3D(STAMGCN)) that addresses for traffic flow data in better periodicity modeling. In contrast to earlier studies, 3D(STAMGCN) approaches the task of traffic flow prediction as a periodic residual learning problem. This is achieved by capturing the input variation between historical time segments and the anticipated output for future time segments. Forecasting traffic flow, as opposed to a direct approach, is significantly simpler when focusing on learning more stationary deviations. This, in turn, aids in the training of the model. Nevertheless, the networks enable residual generation at each time interval through learned variations between future conditions and their corresponding weekly observations. Consequently, this significantly contributes to achieving more accurate forecasts for multiple steps ahead. We executed extensive experiments on two real-world datasets and compared the performance of our model to state-of-the-art (SOTA) techniques.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic flow prediction: A 3D adaptive multi-module joint modeling approach integrating spatial-temporal patterns to capture global features\",\"authors\":\"Zain Ul Abideen,&nbsp;Xiaodong Sun,&nbsp;Chao Sun\",\"doi\":\"10.1002/for.3147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The challenges in citywide traffic flow are intricate, encompassing various factors like temporal and spatial dependencies, holidays, and weather. Despite the complexity, there are still research gaps in effectively incorporating these spatio-temporal relations through deep learning. Addressing these gaps is crucial for tackling issues such as traffic congestion, public safety, and efficient traffic management within cities. This paper underscores notable research gaps, including the development of models capable of handling both local and global traffic flow patterns, integrating multi-modal data sources, and effectively managing spatio-temporal dependencies. In this paper, we proposed a novel model named 3D spatial–temporal-based adaptive modeling graph convolutional network (3D(STAMGCN)) that addresses for traffic flow data in better periodicity modeling. In contrast to earlier studies, 3D(STAMGCN) approaches the task of traffic flow prediction as a periodic residual learning problem. This is achieved by capturing the input variation between historical time segments and the anticipated output for future time segments. Forecasting traffic flow, as opposed to a direct approach, is significantly simpler when focusing on learning more stationary deviations. This, in turn, aids in the training of the model. Nevertheless, the networks enable residual generation at each time interval through learned variations between future conditions and their corresponding weekly observations. Consequently, this significantly contributes to achieving more accurate forecasts for multiple steps ahead. We executed extensive experiments on two real-world datasets and compared the performance of our model to state-of-the-art (SOTA) techniques.</p>\",\"PeriodicalId\":47835,\"journal\":{\"name\":\"Journal of Forecasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forecasting\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/for.3147\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3147","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

全城交通流面临的挑战错综复杂,包括时空依赖性、节假日和天气等各种因素。尽管情况复杂,但在通过深度学习有效整合这些时空关系方面仍存在研究空白。解决这些差距对于解决城市交通拥堵、公共安全和高效交通管理等问题至关重要。本文强调了显著的研究差距,包括开发能够处理本地和全球交通流模式的模型、整合多模式数据源以及有效管理时空依赖关系。在本文中,我们提出了一种名为三维时空自适应建模图卷积网络(3D(STAMGCN))的新型模型,该模型能更好地对交通流数据进行周期性建模。与之前的研究不同,3D(STAMGCN) 将交通流量预测任务视为一个周期性残差学习问题。这是通过捕捉历史时间段之间的输入变化和未来时间段的预期输出来实现的。与直接方法相比,如果侧重于学习更多的静态偏差,交通流量预测就会简单得多。这反过来又有助于模型的训练。尽管如此,通过学习未来状况与相应的每周观测数据之间的变化,网络可以在每个时间间隔生成残差。因此,这大大有助于提前多步实现更准确的预测。我们在两个真实世界的数据集上进行了大量实验,并将我们的模型性能与最先进的(SOTA)技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic flow prediction: A 3D adaptive multi-module joint modeling approach integrating spatial-temporal patterns to capture global features

The challenges in citywide traffic flow are intricate, encompassing various factors like temporal and spatial dependencies, holidays, and weather. Despite the complexity, there are still research gaps in effectively incorporating these spatio-temporal relations through deep learning. Addressing these gaps is crucial for tackling issues such as traffic congestion, public safety, and efficient traffic management within cities. This paper underscores notable research gaps, including the development of models capable of handling both local and global traffic flow patterns, integrating multi-modal data sources, and effectively managing spatio-temporal dependencies. In this paper, we proposed a novel model named 3D spatial–temporal-based adaptive modeling graph convolutional network (3D(STAMGCN)) that addresses for traffic flow data in better periodicity modeling. In contrast to earlier studies, 3D(STAMGCN) approaches the task of traffic flow prediction as a periodic residual learning problem. This is achieved by capturing the input variation between historical time segments and the anticipated output for future time segments. Forecasting traffic flow, as opposed to a direct approach, is significantly simpler when focusing on learning more stationary deviations. This, in turn, aids in the training of the model. Nevertheless, the networks enable residual generation at each time interval through learned variations between future conditions and their corresponding weekly observations. Consequently, this significantly contributes to achieving more accurate forecasts for multiple steps ahead. We executed extensive experiments on two real-world datasets and compared the performance of our model to state-of-the-art (SOTA) techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信