K. A. Ivanov, D. A. Gorlova, I. N. Tsymbalov, I. P. Tsygvintsev, S. A. Shulyapov, R. V. Volkov, A. B. Savel’ev
{"title":"利用预制等离子体透镜进行激光驱动的电子尖点加速","authors":"K. A. Ivanov, D. A. Gorlova, I. N. Tsymbalov, I. P. Tsygvintsev, S. A. Shulyapov, R. V. Volkov, A. B. Savel’ev","doi":"10.1103/physrevaccelbeams.27.051301","DOIUrl":null,"url":null,"abstract":"The simultaneous laser-driven acceleration and angular manipulation of the fast electron beam are experimentally demonstrated. The bunch of multi-MeV energy charged particles is generated during the propagation of the femtosecond laser pulse through the near-critical plasma slab accompanied by plasma channeling. Plasma is formed by the controlled breakdown of a thin-tape target by a powerful nanosecond prepulse. The electron beam pointing approach is based on the refraction of a laser pulse in the presence of a strong radial density gradient in the breakdown of the tape with a small displacement of the femtosecond laser beam relative to the breakdown symmetry axis. A shift of several micrometers makes it possible to achieve beam deflection by an angle up to 10° with acceptable beam charge and spectrum conservation. This opens up opportunities for <i>in situ</i> applications for scanning objects with an electron beam and the multistage electron beam energy gain in consecutive laser accelerators without bulk magnetic optics for particles. Experimental findings are supported by numerical particle-in-cell calculations of laser-plasma acceleration and hydrodynamic simulations.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-driven pointed acceleration of electrons with preformed plasma lens\",\"authors\":\"K. A. Ivanov, D. A. Gorlova, I. N. Tsymbalov, I. P. Tsygvintsev, S. A. Shulyapov, R. V. Volkov, A. B. Savel’ev\",\"doi\":\"10.1103/physrevaccelbeams.27.051301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simultaneous laser-driven acceleration and angular manipulation of the fast electron beam are experimentally demonstrated. The bunch of multi-MeV energy charged particles is generated during the propagation of the femtosecond laser pulse through the near-critical plasma slab accompanied by plasma channeling. Plasma is formed by the controlled breakdown of a thin-tape target by a powerful nanosecond prepulse. The electron beam pointing approach is based on the refraction of a laser pulse in the presence of a strong radial density gradient in the breakdown of the tape with a small displacement of the femtosecond laser beam relative to the breakdown symmetry axis. A shift of several micrometers makes it possible to achieve beam deflection by an angle up to 10° with acceptable beam charge and spectrum conservation. This opens up opportunities for <i>in situ</i> applications for scanning objects with an electron beam and the multistage electron beam energy gain in consecutive laser accelerators without bulk magnetic optics for particles. Experimental findings are supported by numerical particle-in-cell calculations of laser-plasma acceleration and hydrodynamic simulations.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.051301\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.051301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Laser-driven pointed acceleration of electrons with preformed plasma lens
The simultaneous laser-driven acceleration and angular manipulation of the fast electron beam are experimentally demonstrated. The bunch of multi-MeV energy charged particles is generated during the propagation of the femtosecond laser pulse through the near-critical plasma slab accompanied by plasma channeling. Plasma is formed by the controlled breakdown of a thin-tape target by a powerful nanosecond prepulse. The electron beam pointing approach is based on the refraction of a laser pulse in the presence of a strong radial density gradient in the breakdown of the tape with a small displacement of the femtosecond laser beam relative to the breakdown symmetry axis. A shift of several micrometers makes it possible to achieve beam deflection by an angle up to 10° with acceptable beam charge and spectrum conservation. This opens up opportunities for in situ applications for scanning objects with an electron beam and the multistage electron beam energy gain in consecutive laser accelerators without bulk magnetic optics for particles. Experimental findings are supported by numerical particle-in-cell calculations of laser-plasma acceleration and hydrodynamic simulations.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.