J. Paul Elhorst, Ioanna Tziolas, Chang Tan, Petros Milionis
{"title":"距离衰减效应和溢出效应的空间范围","authors":"J. Paul Elhorst, Ioanna Tziolas, Chang Tan, Petros Milionis","doi":"10.1007/s10109-024-00440-5","DOIUrl":null,"url":null,"abstract":"<p>This paper quantifies and graphically illustrates the distance decay effect and spatial reach of spillover effects derived from a spatial Durbin (SD) model with parameterized spatial weight matrices. Building on attributes of the concept of spatial autocorrelation developed by Arthur Getis, we adopt a distance-based negative exponential spatial weight matrix and parameterize it by a decay parameter that is different for each spatial lag in this model, both of the regressand and of all regressors. The quantification and illustration are applied to the spatially augmented neoclassical growth framework, which we estimate using data for 266 NUTS-2 regions in the EU over the period 2000–2018. We find distance decay parameters ranging from 0.233 to 2.224 and spatial reaches ranging from 700 to more than 1500 km for the different growth determinants in this model. These wide ranges highlight the restrictiveness of the conventional SD model based on one common spatial weight matrix for all spatial lags.</p>","PeriodicalId":47245,"journal":{"name":"Journal of Geographical Systems","volume":"47 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distance decay effect and spatial reach of spillovers\",\"authors\":\"J. Paul Elhorst, Ioanna Tziolas, Chang Tan, Petros Milionis\",\"doi\":\"10.1007/s10109-024-00440-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper quantifies and graphically illustrates the distance decay effect and spatial reach of spillover effects derived from a spatial Durbin (SD) model with parameterized spatial weight matrices. Building on attributes of the concept of spatial autocorrelation developed by Arthur Getis, we adopt a distance-based negative exponential spatial weight matrix and parameterize it by a decay parameter that is different for each spatial lag in this model, both of the regressand and of all regressors. The quantification and illustration are applied to the spatially augmented neoclassical growth framework, which we estimate using data for 266 NUTS-2 regions in the EU over the period 2000–2018. We find distance decay parameters ranging from 0.233 to 2.224 and spatial reaches ranging from 700 to more than 1500 km for the different growth determinants in this model. These wide ranges highlight the restrictiveness of the conventional SD model based on one common spatial weight matrix for all spatial lags.</p>\",\"PeriodicalId\":47245,\"journal\":{\"name\":\"Journal of Geographical Systems\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geographical Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10109-024-00440-5\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geographical Systems","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10109-024-00440-5","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
The distance decay effect and spatial reach of spillovers
This paper quantifies and graphically illustrates the distance decay effect and spatial reach of spillover effects derived from a spatial Durbin (SD) model with parameterized spatial weight matrices. Building on attributes of the concept of spatial autocorrelation developed by Arthur Getis, we adopt a distance-based negative exponential spatial weight matrix and parameterize it by a decay parameter that is different for each spatial lag in this model, both of the regressand and of all regressors. The quantification and illustration are applied to the spatially augmented neoclassical growth framework, which we estimate using data for 266 NUTS-2 regions in the EU over the period 2000–2018. We find distance decay parameters ranging from 0.233 to 2.224 and spatial reaches ranging from 700 to more than 1500 km for the different growth determinants in this model. These wide ranges highlight the restrictiveness of the conventional SD model based on one common spatial weight matrix for all spatial lags.
期刊介绍:
The Journal of Geographical Systems (JGS) is an interdisciplinary peer-reviewed academic journal that aims to encourage and promote high-quality scholarship on new theoretical or empirical results, models and methods in the social sciences. It solicits original papers with a spatial dimension that can be of interest to social scientists. Coverage includes regional science, economic geography, spatial economics, regional and urban economics, GIScience and GeoComputation, big data and machine learning. Spatial analysis, spatial econometrics and statistics are strongly represented.
One of the distinctive features of the journal is its concern for the interface between modeling, statistical techniques and spatial issues in a wide spectrum of related fields. An important goal of the journal is to encourage a spatial perspective in the social sciences that emphasizes geographical space as a relevant dimension to our understanding of socio-economic phenomena.
Contributions should be of high-quality, be technically well-crafted, make a substantial contribution to the subject and contain a spatial dimension. The journal also aims to publish, review and survey articles that make recent theoretical and methodological developments more readily accessible to the audience of the journal.
All papers of this journal have undergone rigorous double-blind peer-review, based on initial editor screening and with at least two peer reviewers.
Officially cited as J Geogr Syst