Yang Zhang , Ruyang Yin , Xiao-Mei Yang , Yi-Qing Ni
{"title":"利用可解释动态广义网络识别城市道路浅层缺陷","authors":"Yang Zhang , Ruyang Yin , Xiao-Mei Yang , Yi-Qing Ni","doi":"10.1016/j.trgeo.2024.101273","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning is extensively utilised in transport geotechnical engineering. However, deep architectures have large computational costs and update times, while failing to understand decisions. To this regard, we propose an interpretable dynamic broad network combined with ground-penetrating radar for internal defect identification in roadbeds. The method is more suitable for feature characterisation of two-dimensional data and satisfies incremental updates. The test results indicated that the proposed method has an average recognition accuracy of 0.9124 for the four types of internal defects in roadbeds. Compared to the other four classical machine learning methods, it balances training efficiency and recognition accuracy. Robustness analysis results demonstrated that the method is noise-resistant. However, comprehending the recognition results of intelligent algorithms is a key topic. Local interpretation approach is introduced to quantify the feature importance that affects the decision of the model. Based on the feature importance calculation, it is possible to distinguish between positive and negative regions in one sample that influence the decision of the detection model. These interpretative analyses can assist us in better understanding the reasons for decisions generated by the detection model that provide technical support for subsequent enhancements.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shallow defects identification for urban roads using interpretable dynamic broad network\",\"authors\":\"Yang Zhang , Ruyang Yin , Xiao-Mei Yang , Yi-Qing Ni\",\"doi\":\"10.1016/j.trgeo.2024.101273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning is extensively utilised in transport geotechnical engineering. However, deep architectures have large computational costs and update times, while failing to understand decisions. To this regard, we propose an interpretable dynamic broad network combined with ground-penetrating radar for internal defect identification in roadbeds. The method is more suitable for feature characterisation of two-dimensional data and satisfies incremental updates. The test results indicated that the proposed method has an average recognition accuracy of 0.9124 for the four types of internal defects in roadbeds. Compared to the other four classical machine learning methods, it balances training efficiency and recognition accuracy. Robustness analysis results demonstrated that the method is noise-resistant. However, comprehending the recognition results of intelligent algorithms is a key topic. Local interpretation approach is introduced to quantify the feature importance that affects the decision of the model. Based on the feature importance calculation, it is possible to distinguish between positive and negative regions in one sample that influence the decision of the detection model. These interpretative analyses can assist us in better understanding the reasons for decisions generated by the detection model that provide technical support for subsequent enhancements.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224000941\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224000941","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Shallow defects identification for urban roads using interpretable dynamic broad network
Deep learning is extensively utilised in transport geotechnical engineering. However, deep architectures have large computational costs and update times, while failing to understand decisions. To this regard, we propose an interpretable dynamic broad network combined with ground-penetrating radar for internal defect identification in roadbeds. The method is more suitable for feature characterisation of two-dimensional data and satisfies incremental updates. The test results indicated that the proposed method has an average recognition accuracy of 0.9124 for the four types of internal defects in roadbeds. Compared to the other four classical machine learning methods, it balances training efficiency and recognition accuracy. Robustness analysis results demonstrated that the method is noise-resistant. However, comprehending the recognition results of intelligent algorithms is a key topic. Local interpretation approach is introduced to quantify the feature importance that affects the decision of the model. Based on the feature importance calculation, it is possible to distinguish between positive and negative regions in one sample that influence the decision of the detection model. These interpretative analyses can assist us in better understanding the reasons for decisions generated by the detection model that provide technical support for subsequent enhancements.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.