超高维广义线性混合模型中的线性假设检验

Pub Date : 2024-05-18 DOI:10.1007/s42952-024-00268-1
Xiyun Zhang, Zaixing Li
{"title":"超高维广义线性混合模型中的线性假设检验","authors":"Xiyun Zhang, Zaixing Li","doi":"10.1007/s42952-024-00268-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with linear hypothesis testing problems in ultra high dimensional generalized linear mixed models where the response and the random effects are distribution-free. The constrained-partial-regularization based penalized quasi-likelihood method is proposed and the corresponding statistical properties are studied. To test linear hypotheses, we propose a partial penalized quasi-likelihood ratio test, a partial penalized quasi-score test, and a partial penalized Wald test. The theoretical properties of these three tests are established under both the null and the alternatives. The finite sample performance of the proposed tests has been shown by the simulation studies, and the forest health data is illustrated by our procedure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear hypothesis testing in ultra high dimensional generalized linear mixed models\",\"authors\":\"Xiyun Zhang, Zaixing Li\",\"doi\":\"10.1007/s42952-024-00268-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with linear hypothesis testing problems in ultra high dimensional generalized linear mixed models where the response and the random effects are distribution-free. The constrained-partial-regularization based penalized quasi-likelihood method is proposed and the corresponding statistical properties are studied. To test linear hypotheses, we propose a partial penalized quasi-likelihood ratio test, a partial penalized quasi-score test, and a partial penalized Wald test. The theoretical properties of these three tests are established under both the null and the alternatives. The finite sample performance of the proposed tests has been shown by the simulation studies, and the forest health data is illustrated by our procedure.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-024-00268-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00268-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注响应和随机效应无分布的超高维广义线性混合模型中的线性假设检验问题。本文提出了基于约束-部分正规化的惩罚准似然法,并研究了其相应的统计特性。为了检验线性假设,我们提出了部分受惩罚的准似然比检验、部分受惩罚的准分数检验和部分受惩罚的 Wald 检验。这三种检验的理论性质是在零检验和替代检验下建立的。通过模拟研究证明了所提出检验的有限样本性能,并通过我们的程序对森林健康数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Linear hypothesis testing in ultra high dimensional generalized linear mixed models

分享
查看原文
Linear hypothesis testing in ultra high dimensional generalized linear mixed models

This paper is concerned with linear hypothesis testing problems in ultra high dimensional generalized linear mixed models where the response and the random effects are distribution-free. The constrained-partial-regularization based penalized quasi-likelihood method is proposed and the corresponding statistical properties are studied. To test linear hypotheses, we propose a partial penalized quasi-likelihood ratio test, a partial penalized quasi-score test, and a partial penalized Wald test. The theoretical properties of these three tests are established under both the null and the alternatives. The finite sample performance of the proposed tests has been shown by the simulation studies, and the forest health data is illustrated by our procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信