作为条件独立性模型的矩阵和定向矩阵的公理化

IF 0.9 3区 数学 Q2 MATHEMATICS
Xiangying Chen
{"title":"作为条件独立性模型的矩阵和定向矩阵的公理化","authors":"Xiangying Chen","doi":"10.1137/23m1558653","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1526-1536, June 2024. <br/> Abstract. Matroids and semigraphoids are discrete structures abstracting and generalizing linear independence among vectors and conditional independence among random variables, respectively. Despite the different nature of conditional independence from linear independence, deep connections between these two areas are found and are still undergoing active research. In this paper, we give a characterization of the embedding of matroids into conditional independence structures and its oriented counterpart, which leads to new axiom systems of matroids and oriented matroids.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Axiomatization of Matroids and Oriented Matroids as Conditional Independence Models\",\"authors\":\"Xiangying Chen\",\"doi\":\"10.1137/23m1558653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1526-1536, June 2024. <br/> Abstract. Matroids and semigraphoids are discrete structures abstracting and generalizing linear independence among vectors and conditional independence among random variables, respectively. Despite the different nature of conditional independence from linear independence, deep connections between these two areas are found and are still undergoing active research. In this paper, we give a characterization of the embedding of matroids into conditional independence structures and its oriented counterpart, which leads to new axiom systems of matroids and oriented matroids.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1558653\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1558653","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》第 38 卷第 2 期第 1526-1536 页,2024 年 6 月。 摘要矩阵(Matroids)和半矩阵(semigraphoids)是离散结构,分别抽象和概括了向量间的线性独立性和随机变量间的条件独立性。尽管条件独立性与线性独立性的性质不同,但这两个领域之间存在着深刻的联系,目前仍在积极研究之中。本文给出了将矩阵嵌入条件独立性结构及其定向对应结构的表征,从而引出了矩阵和定向矩阵的新公理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Axiomatization of Matroids and Oriented Matroids as Conditional Independence Models
SIAM Journal on Discrete Mathematics, Volume 38, Issue 2, Page 1526-1536, June 2024.
Abstract. Matroids and semigraphoids are discrete structures abstracting and generalizing linear independence among vectors and conditional independence among random variables, respectively. Despite the different nature of conditional independence from linear independence, deep connections between these two areas are found and are still undergoing active research. In this paper, we give a characterization of the embedding of matroids into conditional independence structures and its oriented counterpart, which leads to new axiom systems of matroids and oriented matroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信