产品分布的总变异距离是 $\#\mathsf{P}$ 完整的

Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran
{"title":"产品分布的总变异距离是 $\\#\\mathsf{P}$ 完整的","authors":"Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran","doi":"arxiv-2405.08255","DOIUrl":null,"url":null,"abstract":"We show that computing the total variation distance between two product\ndistributions is $\\#\\mathsf{P}$-complete. This is in stark contrast with other\ndistance measures such as Kullback-Leibler, Chi-square, and Hellinger, which\ntensorize over the marginals leading to efficient algorithms.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total Variation Distance for Product Distributions is $\\\\#\\\\mathsf{P}$-Complete\",\"authors\":\"Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran\",\"doi\":\"arxiv-2405.08255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that computing the total variation distance between two product\\ndistributions is $\\\\#\\\\mathsf{P}$-complete. This is in stark contrast with other\\ndistance measures such as Kullback-Leibler, Chi-square, and Hellinger, which\\ntensorize over the marginals leading to efficient algorithms.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.08255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,计算两个乘积分布之间的总变异距离是$\#\mathsf{P}$-complete的。这与 Kullback-Leibler、Chi-square 和 Hellinger 等其他距离度量形成了鲜明对比,这些度量会对边际进行张量,从而产生高效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total Variation Distance for Product Distributions is $\#\mathsf{P}$-Complete
We show that computing the total variation distance between two product distributions is $\#\mathsf{P}$-complete. This is in stark contrast with other distance measures such as Kullback-Leibler, Chi-square, and Hellinger, which tensorize over the marginals leading to efficient algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信