艾里函数的扩展哈达玛展开

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Jose Luis Alvarez-Perez
{"title":"艾里函数的扩展哈达玛展开","authors":"Jose Luis Alvarez-Perez","doi":"10.1137/23m1599884","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3537-3558, June 2024. <br/>Abstract. A new set of Hadamard series expansions for the Airy functions, [math] and [math], is presented. Previous Hadamard expansions were defined in terms of an infinite number of integration path subdivisions. Unlike the earlier expansions, the expansions in the present work originate in the splitting of the steepest descent into a number of segments that is not only finite but very small, and these segments are defined on the basis of the location of the branch points. One of the segments reaches to infinity, and this gives rise to the presence of upper incomplete gamma functions. This is one of the most important differences from the Hadamard series as defined in the work of R.B. Paris, where all the incomplete gamma functions are of the lower type. The interest of the new series expansion is twofold. First, it shows how to convert an asymptotic series into a convergent one with a finite splitting of the steepest descent path in a process that can be named “exactification.” Second, the inverse of the phase function that is part of the Laplace-type integral is Taylor-expanded around branch points to produce Puiseux series when necessary. Regarding their computational application, these series expansions require a relatively small number of terms for each of them to reach a very high precision.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Hadamard Expansions for the Airy Functions\",\"authors\":\"Jose Luis Alvarez-Perez\",\"doi\":\"10.1137/23m1599884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3537-3558, June 2024. <br/>Abstract. A new set of Hadamard series expansions for the Airy functions, [math] and [math], is presented. Previous Hadamard expansions were defined in terms of an infinite number of integration path subdivisions. Unlike the earlier expansions, the expansions in the present work originate in the splitting of the steepest descent into a number of segments that is not only finite but very small, and these segments are defined on the basis of the location of the branch points. One of the segments reaches to infinity, and this gives rise to the presence of upper incomplete gamma functions. This is one of the most important differences from the Hadamard series as defined in the work of R.B. Paris, where all the incomplete gamma functions are of the lower type. The interest of the new series expansion is twofold. First, it shows how to convert an asymptotic series into a convergent one with a finite splitting of the steepest descent path in a process that can be named “exactification.” Second, the inverse of the phase function that is part of the Laplace-type integral is Taylor-expanded around branch points to produce Puiseux series when necessary. Regarding their computational application, these series expansions require a relatively small number of terms for each of them to reach a very high precision.\",\"PeriodicalId\":51150,\"journal\":{\"name\":\"SIAM Journal on Mathematical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1599884\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1599884","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数学分析期刊》,第 56 卷第 3 期,第 3537-3558 页,2024 年 6 月。摘要。本文提出了一组新的艾里函数[math]和[math]的哈达玛数列展开式。以前的哈达玛展开式是根据无限多的积分路径细分定义的。与之前的展开式不同,本研究中的展开式源于将最陡下降分成若干段,这些段不仅有限,而且非常小,这些段是根据分支点的位置定义的。其中一段到达无穷大,这就产生了上不完全伽马函数。这是与帕里斯(R.B. Paris)著作中定义的哈达玛数列最重要的区别之一,在帕里斯的著作中,所有不完全伽马函数都是下部类型的。新数列展开的意义有两个方面。首先,它展示了如何将渐近级数转换为收敛级数,并在这一过程中对最陡峭下降路径进行有限分割,这一过程可命名为 "精确化"。其次,作为拉普拉斯积分一部分的相位函数的逆在必要时围绕分支点进行泰勒展开,以产生普伊塞克斯级数。在计算应用方面,这些级数展开只需要相对较少的项就能达到很高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended Hadamard Expansions for the Airy Functions
SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3537-3558, June 2024.
Abstract. A new set of Hadamard series expansions for the Airy functions, [math] and [math], is presented. Previous Hadamard expansions were defined in terms of an infinite number of integration path subdivisions. Unlike the earlier expansions, the expansions in the present work originate in the splitting of the steepest descent into a number of segments that is not only finite but very small, and these segments are defined on the basis of the location of the branch points. One of the segments reaches to infinity, and this gives rise to the presence of upper incomplete gamma functions. This is one of the most important differences from the Hadamard series as defined in the work of R.B. Paris, where all the incomplete gamma functions are of the lower type. The interest of the new series expansion is twofold. First, it shows how to convert an asymptotic series into a convergent one with a finite splitting of the steepest descent path in a process that can be named “exactification.” Second, the inverse of the phase function that is part of the Laplace-type integral is Taylor-expanded around branch points to produce Puiseux series when necessary. Regarding their computational application, these series expansions require a relatively small number of terms for each of them to reach a very high precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
175
审稿时长
12 months
期刊介绍: SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena. Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere. Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信