预测赫农图谱后续步骤的比较分析

Vismaya V S, Alok Hareendran, Bharath V Nair, Sishu Shankar Muni, Martin Lellep
{"title":"预测赫农图谱后续步骤的比较分析","authors":"Vismaya V S, Alok Hareendran, Bharath V Nair, Sishu Shankar Muni, Martin Lellep","doi":"arxiv-2405.10190","DOIUrl":null,"url":null,"abstract":"This paper explores the prediction of subsequent steps in H\\'enon Map using\nvarious machine learning techniques. The H\\'enon map, well known for its\nchaotic behaviour, finds applications in various fields including cryptography,\nimage encryption, and pattern recognition. Machine learning methods,\nparticularly deep learning, are increasingly essential for understanding and\npredicting chaotic phenomena. This study evaluates the performance of different\nmachine learning models including Random Forest, Recurrent Neural Network\n(RNN), Long Short-Term Memory (LSTM) networks, Support Vector Machines (SVM),\nand Feed Forward Neural Networks (FNN) in predicting the evolution of the\nH\\'enon map. Results indicate that LSTM network demonstrate superior predictive\naccuracy, particularly in extreme event prediction. Furthermore, a comparison\nbetween LSTM and FNN models reveals the LSTM's advantage, especially for longer\nprediction horizons and larger datasets. This research underscores the\nsignificance of machine learning in elucidating chaotic dynamics and highlights\nthe importance of model selection and dataset size in forecasting subsequent\nsteps in chaotic systems.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Predicting Subsequent Steps in Hénon Map\",\"authors\":\"Vismaya V S, Alok Hareendran, Bharath V Nair, Sishu Shankar Muni, Martin Lellep\",\"doi\":\"arxiv-2405.10190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the prediction of subsequent steps in H\\\\'enon Map using\\nvarious machine learning techniques. The H\\\\'enon map, well known for its\\nchaotic behaviour, finds applications in various fields including cryptography,\\nimage encryption, and pattern recognition. Machine learning methods,\\nparticularly deep learning, are increasingly essential for understanding and\\npredicting chaotic phenomena. This study evaluates the performance of different\\nmachine learning models including Random Forest, Recurrent Neural Network\\n(RNN), Long Short-Term Memory (LSTM) networks, Support Vector Machines (SVM),\\nand Feed Forward Neural Networks (FNN) in predicting the evolution of the\\nH\\\\'enon map. Results indicate that LSTM network demonstrate superior predictive\\naccuracy, particularly in extreme event prediction. Furthermore, a comparison\\nbetween LSTM and FNN models reveals the LSTM's advantage, especially for longer\\nprediction horizons and larger datasets. This research underscores the\\nsignificance of machine learning in elucidating chaotic dynamics and highlights\\nthe importance of model selection and dataset size in forecasting subsequent\\nsteps in chaotic systems.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.10190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用各种机器学习技术探讨了如何预测 H\'enon 地图的后续步骤。H'enon图以其混沌行为而闻名,在密码学、图像加密和模式识别等多个领域都有应用。机器学习方法,尤其是深度学习,对于理解和预测混沌现象越来越重要。本研究评估了随机森林、循环神经网络(RNN)、长短期记忆(LSTM)网络、支持向量机(SVM)和前馈神经网络(FNN)等不同机器学习模型在预测混沌图演变方面的性能。结果表明,LSTM 网络的预测精度更高,尤其是在极端事件预测方面。此外,LSTM 和 FNN 模型之间的比较显示了 LSTM 的优势,尤其是在预测时间更长、数据集更大的情况下。这项研究强调了机器学习在阐明混沌动力学方面的重要意义,并突出了模型选择和数据集大小在预测混沌系统后续步骤中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Analysis of Predicting Subsequent Steps in Hénon Map
This paper explores the prediction of subsequent steps in H\'enon Map using various machine learning techniques. The H\'enon map, well known for its chaotic behaviour, finds applications in various fields including cryptography, image encryption, and pattern recognition. Machine learning methods, particularly deep learning, are increasingly essential for understanding and predicting chaotic phenomena. This study evaluates the performance of different machine learning models including Random Forest, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) networks, Support Vector Machines (SVM), and Feed Forward Neural Networks (FNN) in predicting the evolution of the H\'enon map. Results indicate that LSTM network demonstrate superior predictive accuracy, particularly in extreme event prediction. Furthermore, a comparison between LSTM and FNN models reveals the LSTM's advantage, especially for longer prediction horizons and larger datasets. This research underscores the significance of machine learning in elucidating chaotic dynamics and highlights the importance of model selection and dataset size in forecasting subsequent steps in chaotic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信