Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa
{"title":"近乎最大法瓦尔德长度集合的结构","authors":"Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa","doi":"10.2140/apde.2024.17.1473","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>⊂</mo>\n<mi>B</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup></math> measurable set with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo><</mo>\n<mi>∞</mi></math>, and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be a line segment with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math>. It is not hard to see that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>≤</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo></math>. We prove that in the case of near equality, that is, </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>≥</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>δ</mi><mo>,</mo>\n</math>\n</div>\n<p> the set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> can be covered by an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math>-Lipschitz graph, up to a set of length <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math>. The dependence between <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>δ</mi></math> is polynomial: in fact, the conclusions hold with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi>\n<mo>=</mo>\n<mi>C</mi><msup><mrow><mi>δ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>7</mn><mn>0</mn></mrow></msup></math> for an absolute constant <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi>\n<mo>></mo> <mn>0</mn></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of sets with nearly maximal Favard length\",\"authors\":\"Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa\",\"doi\":\"10.2140/apde.2024.17.1473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi>\\n<mo>⊂</mo>\\n<mi>B</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be an <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup></math> measurable set with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo><</mo>\\n<mi>∞</mi></math>, and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be a line segment with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math>. It is not hard to see that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≤</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo></math>. We prove that in the case of near equality, that is, </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mi>Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>−</mo>\\n<mi>δ</mi><mo>,</mo>\\n</math>\\n</div>\\n<p> the set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math> can be covered by an <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math>-Lipschitz graph, up to a set of length <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math>. The dependence between <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>δ</mi></math> is polynomial: in fact, the conclusions hold with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi>\\n<mo>=</mo>\\n<mi>C</mi><msup><mrow><mi>δ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>7</mn><mn>0</mn></mrow></msup></math> for an absolute constant <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>C</mi>\\n<mo>></mo> <mn>0</mn></math>. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1473\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1473","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Structure of sets with nearly maximal Favard length
Let be an measurable set with , and let be a line segment with . It is not hard to see that . We prove that in the case of near equality, that is,
the set can be covered by an -Lipschitz graph, up to a set of length . The dependence between and is polynomial: in fact, the conclusions hold with for an absolute constant .
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.