Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa
{"title":"近乎最大法瓦尔德长度集合的结构","authors":"Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa","doi":"10.2140/apde.2024.17.1473","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>⊂</mo>\n<mi>B</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup></math> measurable set with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo><</mo>\n<mi>∞</mi></math>, and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be a line segment with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math>. It is not hard to see that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>≤</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo></math>. We prove that in the case of near equality, that is, </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>≥</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>δ</mi><mo>,</mo>\n</math>\n</div>\n<p> the set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> can be covered by an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math>-Lipschitz graph, up to a set of length <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math>. The dependence between <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>δ</mi></math> is polynomial: in fact, the conclusions hold with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi>\n<mo>=</mo>\n<mi>C</mi><msup><mrow><mi>δ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>7</mn><mn>0</mn></mrow></msup></math> for an absolute constant <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi>\n<mo>></mo> <mn>0</mn></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of sets with nearly maximal Favard length\",\"authors\":\"Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa\",\"doi\":\"10.2140/apde.2024.17.1473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi>\\n<mo>⊂</mo>\\n<mi>B</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be an <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup></math> measurable set with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo><</mo>\\n<mi>∞</mi></math>, and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be a line segment with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math>. It is not hard to see that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≤</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo></math>. We prove that in the case of near equality, that is, </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mi>Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo><mi> Fav</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>−</mo>\\n<mi>δ</mi><mo>,</mo>\\n</math>\\n</div>\\n<p> the set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math> can be covered by an <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math>-Lipschitz graph, up to a set of length <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math>. The dependence between <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>δ</mi></math> is polynomial: in fact, the conclusions hold with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi>\\n<mo>=</mo>\\n<mi>C</mi><msup><mrow><mi>δ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>7</mn><mn>0</mn></mrow></msup></math> for an absolute constant <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>C</mi>\\n<mo>></mo> <mn>0</mn></math>. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1473\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1473","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure of sets with nearly maximal Favard length
Let be an measurable set with , and let be a line segment with . It is not hard to see that . We prove that in the case of near equality, that is,
the set can be covered by an -Lipschitz graph, up to a set of length . The dependence between and is polynomial: in fact, the conclusions hold with for an absolute constant .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.