近乎最大法瓦尔德长度集合的结构

IF 1.8 1区 数学 Q1 MATHEMATICS
Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa
{"title":"近乎最大法瓦尔德长度集合的结构","authors":"Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa","doi":"10.2140/apde.2024.17.1473","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>⊂</mo>\n<mi>B</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup></math> measurable set with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>&lt;</mo>\n<mi>∞</mi></math>, and let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>L</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be a line segment with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo> <msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math>. It is not hard to see that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>≤</mo><mi> Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo></math>. We prove that in the case of near equality, that is, </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo>\n<mo>≥</mo><mi> Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>L</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>δ</mi><mo>,</mo>\n</math>\n</div>\n<p> the set <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> can be covered by an <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math>-Lipschitz graph, up to a set of length <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math>. The dependence between <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>δ</mi></math> is polynomial: in fact, the conclusions hold with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>𝜖</mi>\n<mo>=</mo>\n<mi>C</mi><msup><mrow><mi>δ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>7</mn><mn>0</mn></mrow></msup></math> for an absolute constant <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>C</mi>\n<mo>&gt;</mo> <mn>0</mn></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of sets with nearly maximal Favard length\",\"authors\":\"Alan Chang, Damian Dąbrowski, Tuomas Orponen, Michele Villa\",\"doi\":\"10.2140/apde.2024.17.1473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi>\\n<mo>⊂</mo>\\n<mi>B</mi><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be an <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup></math> measurable set with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>&lt;</mo>\\n<mi>∞</mi></math>, and let <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>L</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math> be a line segment with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo> <msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math>. It is not hard to see that <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≤</mo><mi> Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo></math>. We prove that in the case of near equality, that is, </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<mi>Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo><mi> Fav</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>L</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>−</mo>\\n<mi>δ</mi><mo>,</mo>\\n</math>\\n</div>\\n<p> the set <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>E</mi></math> can be covered by an <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math>-Lipschitz graph, up to a set of length <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math>. The dependence between <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>δ</mi></math> is polynomial: in fact, the conclusions hold with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>𝜖</mi>\\n<mo>=</mo>\\n<mi>C</mi><msup><mrow><mi>δ</mi></mrow><mrow><mn>1</mn><mo>∕</mo><mn>7</mn><mn>0</mn></mrow></msup></math> for an absolute constant <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>C</mi>\\n<mo>&gt;</mo> <mn>0</mn></math>. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1473\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1473","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 E⊂B(1)⊂ℝ2 是一个ℋ1 可测集,其中ℋ1(E)<∞,又设 L⊂ℝ2 是一条线段,其中ℋ1(L)= ℋ1(E)。不难看出,Fav (E)≤ Fav (L)。我们证明,在近似相等的情况下,即 Fav (E)≥ Fav (L)-δ,集合 E 可以被一个𝜖-Lipschitz 图覆盖,直到一个长度为𝜖 的集合。𝜖 与 δ 之间的依赖关系是多项式的:事实上,在绝对常数 C> 0 时,结论在 𝜖=Cδ1∕70 时成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure of sets with nearly maximal Favard length

Let E B(1) 2 be an 1 measurable set with 1(E) < , and let L 2 be a line segment with 1(L) = 1(E). It is not hard to see that Fav (E) Fav (L). We prove that in the case of near equality, that is,

Fav (E) Fav (L) δ,

the set E can be covered by an 𝜖-Lipschitz graph, up to a set of length 𝜖. The dependence between 𝜖 and δ is polynomial: in fact, the conclusions hold with 𝜖 = Cδ170 for an absolute constant C > 0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信