{"title":"大属的畸变双曲面和谱隙","authors":"Yunhui Wu, Haohao Zhang, Xuwen Zhu","doi":"10.2140/apde.2024.17.1377","DOIUrl":null,"url":null,"abstract":"<p>We study the differences of two consecutive eigenvalues <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub>\n<mo>−</mo> <msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi></math> up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>g</mi>\n<mo>−</mo> <mn>2</mn></math>, for the Laplacian on hyperbolic surfaces of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn></mrow>\n<mrow><mn>4</mn></mrow></mfrac></math> as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"62 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerating hyperbolic surfaces and spectral gaps for large genus\",\"authors\":\"Yunhui Wu, Haohao Zhang, Xuwen Zhu\",\"doi\":\"10.2140/apde.2024.17.1377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the differences of two consecutive eigenvalues <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub>\\n<mo>−</mo> <msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>i</mi></math> up to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi>g</mi>\\n<mo>−</mo> <mn>2</mn></math>, for the Laplacian on hyperbolic surfaces of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi></math>, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn></mrow>\\n<mrow><mn>4</mn></mrow></mfrac></math> as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1377\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1377","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Degenerating hyperbolic surfaces and spectral gaps for large genus
We study the differences of two consecutive eigenvalues , up to , for the Laplacian on hyperbolic surfaces of genus , and show that the supremum of such spectral gaps over the moduli space has infimum limit at least as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.