{"title":"大属的畸变双曲面和谱隙","authors":"Yunhui Wu, Haohao Zhang, Xuwen Zhu","doi":"10.2140/apde.2024.17.1377","DOIUrl":null,"url":null,"abstract":"<p>We study the differences of two consecutive eigenvalues <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub>\n<mo>−</mo> <msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi></math> up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>g</mi>\n<mo>−</mo> <mn>2</mn></math>, for the Laplacian on hyperbolic surfaces of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn></mrow>\n<mrow><mn>4</mn></mrow></mfrac></math> as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerating hyperbolic surfaces and spectral gaps for large genus\",\"authors\":\"Yunhui Wu, Haohao Zhang, Xuwen Zhu\",\"doi\":\"10.2140/apde.2024.17.1377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the differences of two consecutive eigenvalues <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub>\\n<mo>−</mo> <msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>i</mi></math> up to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi>g</mi>\\n<mo>−</mo> <mn>2</mn></math>, for the Laplacian on hyperbolic surfaces of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi></math>, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn></mrow>\\n<mrow><mn>4</mn></mrow></mfrac></math> as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1377\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Degenerating hyperbolic surfaces and spectral gaps for large genus
We study the differences of two consecutive eigenvalues , up to , for the Laplacian on hyperbolic surfaces of genus , and show that the supremum of such spectral gaps over the moduli space has infimum limit at least as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.