大属的畸变双曲面和谱隙

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yunhui Wu, Haohao Zhang, Xuwen Zhu
{"title":"大属的畸变双曲面和谱隙","authors":"Yunhui Wu, Haohao Zhang, Xuwen Zhu","doi":"10.2140/apde.2024.17.1377","DOIUrl":null,"url":null,"abstract":"<p>We study the differences of two consecutive eigenvalues <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub>\n<mo>−</mo> <msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi></math> up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi>g</mi>\n<mo>−</mo> <mn>2</mn></math>, for the Laplacian on hyperbolic surfaces of genus <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>g</mi></math>, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn></mrow>\n<mrow><mn>4</mn></mrow></mfrac></math> as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degenerating hyperbolic surfaces and spectral gaps for large genus\",\"authors\":\"Yunhui Wu, Haohao Zhang, Xuwen Zhu\",\"doi\":\"10.2140/apde.2024.17.1377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the differences of two consecutive eigenvalues <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub>\\n<mo>−</mo> <msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></math>, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>i</mi></math> up to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi>g</mi>\\n<mo>−</mo> <mn>2</mn></math>, for the Laplacian on hyperbolic surfaces of genus <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>g</mi></math>, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn></mrow>\\n<mrow><mn>4</mn></mrow></mfrac></math> as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1377\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了属g的双曲面上拉普拉斯函数的两个连续特征值λi- λi-1(i最大为2g- 2)的差值,并证明了随着属的无穷大,模空间上的这种谱差距的上极大值至少有14个下极大值。此外,还建立了退化双曲面上特征值的最小-最大原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degenerating hyperbolic surfaces and spectral gaps for large genus

We study the differences of two consecutive eigenvalues λi λi1, i up to 2g 2, for the Laplacian on hyperbolic surfaces of genus g, and show that the supremum of such spectral gaps over the moduli space has infimum limit at least 1 4 as the genus goes to infinity. A min-max principle for eigenvalues on degenerating hyperbolic surfaces is also established.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信